blob: 2a039765bac5d6216f9ce68ea0657522d04b3500 [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 2008 Standards for Technology in Automotive Retail
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* David Carver - STAR - bug 224197 - initial API and implementation
* based on work from Apache Xalan 2.7.0
*******************************************************************************/
/*
* Copyright 2002-2004 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Id: RedundentExprEliminator.java,v 1.3 2008/03/28 02:38:15 dacarver Exp $
*/
package org.eclipse.wst.xsl.core.internal.compiler.xslt10.templates;
import java.util.Vector;
import org.apache.xalan.res.XSLMessages;
import org.apache.xalan.res.XSLTErrorResources;
import org.apache.xml.utils.QName;
import org.apache.xml.utils.WrappedRuntimeException;
import org.apache.xpath.Expression;
import org.apache.xpath.ExpressionNode;
import org.apache.xpath.ExpressionOwner;
import org.eclipse.wst.xsl.core.internal.compiler.xslt10.xpath.XPath;
import org.apache.xpath.axes.AxesWalker;
import org.apache.xpath.axes.FilterExprIteratorSimple;
import org.apache.xpath.axes.FilterExprWalker;
import org.apache.xpath.axes.LocPathIterator;
import org.apache.xpath.axes.SelfIteratorNoPredicate;
import org.apache.xpath.axes.WalkerFactory;
import org.apache.xpath.axes.WalkingIterator;
import org.apache.xpath.operations.Variable;
import org.apache.xpath.operations.VariableSafeAbsRef;
/**
* This class eleminates redundent XPaths from a given subtree, and also
* collects all absolute paths within the subtree. First it must be called as a
* visitor to the subtree, and then eleminateRedundent must be called.
*/
public class RedundentExprEliminator extends XSLTVisitor {
Vector m_paths;
Vector m_absPaths;
boolean m_isSameContext;
AbsPathChecker m_absPathChecker = new AbsPathChecker();
private static int m_uniquePseudoVarID = 1;
static final String PSUEDOVARNAMESPACE = org.apache.xml.utils.Constants.S_VENDORURL
+ "/xalan/psuedovar";
public static final boolean DEBUG = false;
public static final boolean DIAGNOSE_NUM_PATHS_REDUCED = false;
public static final boolean DIAGNOSE_MULTISTEPLIST = false;
/**
* So we can reuse it over and over again.
*/
VarNameCollector m_varNameCollector = new VarNameCollector();
/**
* Construct a RedundentExprEliminator.
*/
public RedundentExprEliminator() {
m_isSameContext = true;
m_absPaths = new Vector();
m_paths = null;
}
/**
* Method to be called after the all expressions within an node context have
* been visited. It eliminates redundent expressions by creating a variable
* in the psuedoVarRecipient for each redundent expression, and then
* rewriting the redundent expression to be a variable reference.
*
* @param psuedoVarRecipient
* The recipient of the psuedo vars. The variables will be
* inserted as first children of the element, before any existing
* variables.
*/
public void eleminateRedundentLocals(ElemTemplateElement psuedoVarRecipient) {
eleminateRedundent(psuedoVarRecipient, m_paths);
}
/**
* Method to be called after the all global expressions within a stylesheet
* have been collected. It eliminates redundent expressions by creating a
* variable in the psuedoVarRecipient for each redundent expression, and
* then rewriting the redundent expression to be a variable reference.
*
*/
public void eleminateRedundentGlobals(StylesheetRoot stylesheet) {
eleminateRedundent(stylesheet, m_absPaths);
}
/**
* Method to be called after the all expressions within an node context have
* been visited. It eliminates redundent expressions by creating a variable
* in the psuedoVarRecipient for each redundent expression, and then
* rewriting the redundent expression to be a variable reference.
*
* @param psuedoVarRecipient
* The owner of the subtree from where the paths were collected.
* @param paths
* A vector of paths that hold ExpressionOwner objects, which
* must yield LocationPathIterators.
*/
protected void eleminateRedundent(ElemTemplateElement psuedoVarRecipient,
Vector paths) {
int n = paths.size();
int numPathsEliminated = 0;
int numUniquePathsEliminated = 0;
for (int i = 0; i < n; i++) {
ExpressionOwner owner = (ExpressionOwner) paths.elementAt(i);
if (null != owner) {
int found = findAndEliminateRedundant(i + 1, i, owner,
psuedoVarRecipient, paths);
if (found > 0)
numUniquePathsEliminated++;
numPathsEliminated += found;
}
}
eleminateSharedPartialPaths(psuedoVarRecipient, paths);
if (DIAGNOSE_NUM_PATHS_REDUCED)
diagnoseNumPaths(paths, numPathsEliminated,
numUniquePathsEliminated);
}
/**
* Eliminate the shared partial paths in the expression list.
*
* @param psuedoVarRecipient
* The recipient of the psuedo vars.
*
* @param paths
* A vector of paths that hold ExpressionOwner objects, which
* must yield LocationPathIterators.
*/
protected void eleminateSharedPartialPaths(
ElemTemplateElement psuedoVarRecipient, Vector paths) {
MultistepExprHolder list = createMultistepExprList(paths);
if (null != list) {
if (DIAGNOSE_MULTISTEPLIST)
list.diagnose();
boolean isGlobal = (paths == m_absPaths);
// Iterate over the list, starting with the most number of paths,
// trying to find the longest matches first.
int longestStepsCount = list.m_stepCount;
for (int i = longestStepsCount - 1; i >= 1; i--) {
MultistepExprHolder next = list;
while (null != next) {
if (next.m_stepCount < i)
break;
list = matchAndEliminatePartialPaths(next, list, isGlobal,
i, psuedoVarRecipient);
next = next.m_next;
}
}
}
}
/**
* For a given path, see if there are any partitial matches in the list,
* and, if there are, replace those partial paths with psuedo variable refs,
* and create the psuedo variable decl.
*
* @return The head of the list, which may have changed.
*/
protected MultistepExprHolder matchAndEliminatePartialPaths(
MultistepExprHolder testee, MultistepExprHolder head,
boolean isGlobal, int lengthToTest, ElemTemplateElement varScope) {
if (null == testee.m_exprOwner)
return head;
// Start with the longest possible match, and move down.
WalkingIterator iter1 = (WalkingIterator) testee.m_exprOwner
.getExpression();
if (partialIsVariable(testee, lengthToTest))
return head;
MultistepExprHolder matchedPaths = null;
MultistepExprHolder matchedPathsTail = null;
MultistepExprHolder meh = head;
while (null != meh) {
if ((meh != testee) && (null != meh.m_exprOwner)) {
WalkingIterator iter2 = (WalkingIterator) meh.m_exprOwner
.getExpression();
if (stepsEqual(iter1, iter2, lengthToTest)) {
if (null == matchedPaths) {
try {
matchedPaths = (MultistepExprHolder) testee.clone();
testee.m_exprOwner = null; // So it won't be
// processed again.
} catch (CloneNotSupportedException cnse) {
}
matchedPathsTail = matchedPaths;
matchedPathsTail.m_next = null;
}
try {
matchedPathsTail.m_next = (MultistepExprHolder) meh
.clone();
meh.m_exprOwner = null; // So it won't be processed
// again.
} catch (CloneNotSupportedException cnse) {
}
matchedPathsTail = matchedPathsTail.m_next;
matchedPathsTail.m_next = null;
}
}
meh = meh.m_next;
}
int matchCount = 0;
if (null != matchedPaths) {
ElemTemplateElement root = isGlobal ? varScope
: findCommonAncestor(matchedPaths);
WalkingIterator sharedIter = (WalkingIterator) matchedPaths.m_exprOwner
.getExpression();
WalkingIterator newIter = createIteratorFromSteps(sharedIter,
lengthToTest);
ElemVariable var = createPseudoVarDecl(root, newIter, isGlobal);
if (DIAGNOSE_MULTISTEPLIST)
System.err.println("Created var: " + var.getName()
+ (isGlobal ? "(Global)" : ""));
while (null != matchedPaths) {
ExpressionOwner owner = matchedPaths.m_exprOwner;
WalkingIterator iter = (WalkingIterator) owner.getExpression();
if (DIAGNOSE_MULTISTEPLIST)
diagnoseLineNumber(iter);
LocPathIterator newIter2 = changePartToRef(var.getName(), iter,
lengthToTest, isGlobal);
owner.setExpression(newIter2);
matchedPaths = matchedPaths.m_next;
}
}
if (DIAGNOSE_MULTISTEPLIST)
diagnoseMultistepList(matchCount, lengthToTest, isGlobal);
return head;
}
/**
* Check if results of partial reduction will just be a variable, in which
* case, skip it.
*/
boolean partialIsVariable(MultistepExprHolder testee, int lengthToTest) {
if (1 == lengthToTest) {
WalkingIterator wi = (WalkingIterator) testee.m_exprOwner
.getExpression();
if (wi.getFirstWalker() instanceof FilterExprWalker)
return true;
}
return false;
}
/**
* Tell what line number belongs to a given expression.
*/
protected void diagnoseLineNumber(Expression expr) {
ElemTemplateElement e = getElemFromExpression(expr);
System.err.println(" " + e.getSystemId() + " Line "
+ e.getLineNumber());
}
/**
* Given a linked list of expressions, find the common ancestor that is
* suitable for holding a psuedo variable for shared access.
*/
protected ElemTemplateElement findCommonAncestor(MultistepExprHolder head) {
// Not sure this algorithm is the best, but will do for the moment.
int numExprs = head.getLength();
// The following could be made cheaper by pre-allocating large arrays,
// but then we would have to assume a max number of reductions,
// which I am not inclined to do right now.
ElemTemplateElement[] elems = new ElemTemplateElement[numExprs];
int[] ancestorCounts = new int[numExprs];
// Loop through, getting the parent elements, and counting the
// ancestors.
MultistepExprHolder next = head;
int shortestAncestorCount = 10000;
for (int i = 0; i < numExprs; i++) {
ElemTemplateElement elem = getElemFromExpression(next.m_exprOwner
.getExpression());
elems[i] = elem;
int numAncestors = countAncestors(elem);
ancestorCounts[i] = numAncestors;
if (numAncestors < shortestAncestorCount) {
shortestAncestorCount = numAncestors;
}
next = next.m_next;
}
// Now loop through and "correct" the elements that have more ancestors.
for (int i = 0; i < numExprs; i++) {
if (ancestorCounts[i] > shortestAncestorCount) {
int numStepCorrection = ancestorCounts[i]
- shortestAncestorCount;
for (int j = 0; j < numStepCorrection; j++) {
elems[i] = elems[i].getParentElem();
}
}
}
// Now everyone has an equal number of ancestors. Walk up from here
// equally until all are equal.
ElemTemplateElement first = null;
while (shortestAncestorCount-- >= 0) {
boolean areEqual = true;
first = elems[0];
for (int i = 1; i < numExprs; i++) {
if (first != elems[i]) {
areEqual = false;
break;
}
}
// This second check is to make sure we have a common ancestor that
// is not the same
// as the expression owner... i.e. the var decl has to go above the
// expression owner.
if (areEqual && isNotSameAsOwner(head, first)
&& first.canAcceptVariables()) {
if (DIAGNOSE_MULTISTEPLIST) {
System.err.print(first.getClass().getName());
System.err.println(" at " + first.getSystemId()
+ " Line " + first.getLineNumber());
}
return first;
}
for (int i = 0; i < numExprs; i++) {
elems[i] = elems[i].getParentElem();
}
}
assertion(false, "Could not find common ancestor!!!");
return null;
}
/**
* Find out if the given ElemTemplateElement is not the same as one of the
* ElemTemplateElement owners of the expressions.
*
* @param head
* Head of linked list of expression owners.
* @param ete
* The ElemTemplateElement that is a candidate for a psuedo
* variable parent.
* @return true if the given ElemTemplateElement is not the same as one of
* the ElemTemplateElement owners of the expressions. This is to
* make sure we find an ElemTemplateElement that is in a viable
* position to hold psuedo variables that are visible to the
* references.
*/
protected boolean isNotSameAsOwner(MultistepExprHolder head,
ElemTemplateElement ete) {
MultistepExprHolder next = head;
while (null != next) {
ElemTemplateElement elemOwner = getElemFromExpression(next.m_exprOwner
.getExpression());
if (elemOwner == ete)
return false;
next = next.m_next;
}
return true;
}
/**
* Count the number of ancestors that a ElemTemplateElement has.
*
* @param elem
* An representation of an element in an XSLT stylesheet.
* @return The number of ancestors of elem (including the element itself).
*/
protected int countAncestors(ElemTemplateElement elem) {
int count = 0;
while (null != elem) {
count++;
elem = elem.getParentElem();
}
return count;
}
/**
* Print out diagnostics about partial multistep evaluation.
*/
protected void diagnoseMultistepList(int matchCount, int lengthToTest,
boolean isGlobal) {
if (matchCount > 0) {
System.err.print("Found multistep matches: " + matchCount + ", "
+ lengthToTest + " length");
if (isGlobal)
System.err.println(" (global)");
else
System.err.println();
}
}
/**
* Change a given number of steps to a single variable reference.
*
* @param uniquePseudoVarName
* The name of the variable reference.
* @param wi
* The walking iterator that is to be changed.
* @param numSteps
* The number of steps to be changed.
* @param isGlobal
* true if this will be a global reference.
*/
protected LocPathIterator changePartToRef(final QName uniquePseudoVarName,
WalkingIterator wi, final int numSteps, final boolean isGlobal) {
Variable var = new Variable();
var.setQName(uniquePseudoVarName);
var.setIsGlobal(isGlobal);
if (isGlobal) {
ElemTemplateElement elem = getElemFromExpression(wi);
StylesheetRoot root = elem.getStylesheetRoot();
Vector vars = root.getVariablesAndParamsComposed();
var.setIndex(vars.size() - 1);
}
// Walk to the first walker after the one's we are replacing.
AxesWalker walker = wi.getFirstWalker();
for (int i = 0; i < numSteps; i++) {
assertion(null != walker, "Walker should not be null!");
walker = walker.getNextWalker();
}
if (null != walker) {
FilterExprWalker few = new FilterExprWalker(wi);
few.setInnerExpression(var);
few.exprSetParent(wi);
few.setNextWalker(walker);
walker.setPrevWalker(few);
wi.setFirstWalker(few);
return wi;
} else {
FilterExprIteratorSimple feis = new FilterExprIteratorSimple(var);
feis.exprSetParent(wi.exprGetParent());
return feis;
}
}
/**
* Create a new WalkingIterator from the steps in another WalkingIterator.
*
* @param wi
* The iterator from where the steps will be taken.
* @param numSteps
* The number of steps from the first to copy into the new
* iterator.
* @return The new iterator.
*/
protected WalkingIterator createIteratorFromSteps(final WalkingIterator wi,
int numSteps) {
WalkingIterator newIter = new WalkingIterator(wi.getPrefixResolver());
try {
AxesWalker walker = (AxesWalker) wi.getFirstWalker().clone();
newIter.setFirstWalker(walker);
walker.setLocPathIterator(newIter);
for (int i = 1; i < numSteps; i++) {
AxesWalker next = (AxesWalker) walker.getNextWalker().clone();
walker.setNextWalker(next);
next.setLocPathIterator(newIter);
walker = next;
}
walker.setNextWalker(null);
} catch (CloneNotSupportedException cnse) {
throw new WrappedRuntimeException(cnse);
}
return newIter;
}
/**
* Compare a given number of steps between two iterators, to see if they are
* equal.
*
* @param iter1
* The first iterator to compare.
* @param iter2
* The second iterator to compare.
* @param numSteps
* The number of steps to compare.
* @return true If the given number of steps are equal.
*
*/
protected boolean stepsEqual(WalkingIterator iter1, WalkingIterator iter2,
int numSteps) {
AxesWalker aw1 = iter1.getFirstWalker();
AxesWalker aw2 = iter2.getFirstWalker();
for (int i = 0; (i < numSteps); i++) {
if ((null == aw1) || (null == aw2))
return false;
if (!aw1.deepEquals(aw2))
return false;
aw1 = aw1.getNextWalker();
aw2 = aw2.getNextWalker();
}
assertion((null != aw1) || (null != aw2), "Total match is incorrect!");
return true;
}
/**
* For the reduction of location path parts, create a list of all the
* multistep paths with more than one step, sorted by the number of steps,
* with the most steps occuring earlier in the list. If the list is only one
* member, don't bother returning it.
*
* @param paths
* Vector of ExpressionOwner objects, which may contain null
* entries. The ExpressionOwner objects must own LocPathIterator
* objects.
* @return null if no multipart paths are found or the list is only of
* length 1, otherwise the first MultistepExprHolder in a linked
* list of these objects.
*/
protected MultistepExprHolder createMultistepExprList(Vector paths) {
MultistepExprHolder first = null;
int n = paths.size();
for (int i = 0; i < n; i++) {
ExpressionOwner eo = (ExpressionOwner) paths.elementAt(i);
if (null == eo)
continue;
// Assuming location path iterators should be OK.
LocPathIterator lpi = (LocPathIterator) eo.getExpression();
int numPaths = countSteps(lpi);
if (numPaths > 1) {
if (null == first)
first = new MultistepExprHolder(eo, numPaths, null);
else
first = first.addInSortedOrder(eo, numPaths);
}
}
if ((null == first) || (first.getLength() <= 1))
return null;
else
return first;
}
/**
* Look through the vector from start point, looking for redundant
* occurances. When one or more are found, create a psuedo variable
* declaration, insert it into the stylesheet, and replace the occurance
* with a reference to the psuedo variable. When a redundent variable is
* found, it's slot in the vector will be replaced by null.
*
* @param start
* The position to start looking in the vector.
* @param firstOccuranceIndex
* The position of firstOccuranceOwner.
* @param firstOccuranceOwner
* The owner of the expression we are looking for.
* @param psuedoVarRecipient
* Where to put the psuedo variables.
*
* @return The number of expression occurances that were modified.
*/
protected int findAndEliminateRedundant(int start, int firstOccuranceIndex,
ExpressionOwner firstOccuranceOwner,
ElemTemplateElement psuedoVarRecipient, Vector paths)
throws org.w3c.dom.DOMException {
MultistepExprHolder head = null;
MultistepExprHolder tail = null;
int numPathsFound = 0;
int n = paths.size();
Expression expr1 = firstOccuranceOwner.getExpression();
if (DEBUG)
assertIsLocPathIterator(expr1, firstOccuranceOwner);
boolean isGlobal = (paths == m_absPaths);
LocPathIterator lpi = (LocPathIterator) expr1;
int stepCount = countSteps(lpi);
for (int j = start; j < n; j++) {
ExpressionOwner owner2 = (ExpressionOwner) paths.elementAt(j);
if (null != owner2) {
Expression expr2 = owner2.getExpression();
boolean isEqual = expr2.deepEquals(lpi);
if (isEqual) {
LocPathIterator lpi2 = (LocPathIterator) expr2;
if (null == head) {
head = new MultistepExprHolder(firstOccuranceOwner,
stepCount, null);
tail = head;
numPathsFound++;
}
tail.m_next = new MultistepExprHolder(owner2, stepCount,
null);
tail = tail.m_next;
// Null out the occurance, so we don't have to test it
// again.
paths.setElementAt(null, j);
// foundFirst = true;
numPathsFound++;
}
}
}
// Change all globals in xsl:templates, etc, to global vars no matter
// what.
if ((0 == numPathsFound) && isGlobal) {
head = new MultistepExprHolder(firstOccuranceOwner, stepCount, null);
numPathsFound++;
}
if (null != head) {
ElemTemplateElement root = isGlobal ? psuedoVarRecipient
: findCommonAncestor(head);
LocPathIterator sharedIter = (LocPathIterator) head.m_exprOwner
.getExpression();
ElemVariable var = createPseudoVarDecl(root, sharedIter, isGlobal);
if (DIAGNOSE_MULTISTEPLIST)
System.err.println("Created var: " + var.getName()
+ (isGlobal ? "(Global)" : ""));
QName uniquePseudoVarName = var.getName();
while (null != head) {
ExpressionOwner owner = head.m_exprOwner;
if (DIAGNOSE_MULTISTEPLIST)
diagnoseLineNumber(owner.getExpression());
changeToVarRef(uniquePseudoVarName, owner, paths, root);
head = head.m_next;
}
// Replace the first occurance with the variable's XPath, so
// that further reduction may take place if needed.
paths.setElementAt(var.getSelect(), firstOccuranceIndex);
}
return numPathsFound;
}
/**
* To be removed.
*/
protected int oldFindAndEliminateRedundant(int start,
int firstOccuranceIndex, ExpressionOwner firstOccuranceOwner,
ElemTemplateElement psuedoVarRecipient, Vector paths)
throws org.w3c.dom.DOMException {
QName uniquePseudoVarName = null;
boolean foundFirst = false;
int numPathsFound = 0;
int n = paths.size();
Expression expr1 = firstOccuranceOwner.getExpression();
if (DEBUG)
assertIsLocPathIterator(expr1, firstOccuranceOwner);
boolean isGlobal = (paths == m_absPaths);
LocPathIterator lpi = (LocPathIterator) expr1;
for (int j = start; j < n; j++) {
ExpressionOwner owner2 = (ExpressionOwner) paths.elementAt(j);
if (null != owner2) {
Expression expr2 = owner2.getExpression();
boolean isEqual = expr2.deepEquals(lpi);
if (isEqual) {
LocPathIterator lpi2 = (LocPathIterator) expr2;
if (!foundFirst) {
foundFirst = true;
// Insert variable decl into psuedoVarRecipient
// We want to insert this into the first legitimate
// position for a variable.
ElemVariable var = createPseudoVarDecl(
psuedoVarRecipient, lpi, isGlobal);
if (null == var)
return 0;
uniquePseudoVarName = var.getName();
changeToVarRef(uniquePseudoVarName,
firstOccuranceOwner, paths, psuedoVarRecipient);
// Replace the first occurance with the variable's
// XPath, so
// that further reduction may take place if needed.
paths
.setElementAt(var.getSelect(),
firstOccuranceIndex);
numPathsFound++;
}
changeToVarRef(uniquePseudoVarName, owner2, paths,
psuedoVarRecipient);
// Null out the occurance, so we don't have to test it
// again.
paths.setElementAt(null, j);
// foundFirst = true;
numPathsFound++;
}
}
}
// Change all globals in xsl:templates, etc, to global vars no matter
// what.
if ((0 == numPathsFound) && (paths == m_absPaths)) {
ElemVariable var = createPseudoVarDecl(psuedoVarRecipient, lpi,
true);
if (null == var)
return 0;
uniquePseudoVarName = var.getName();
changeToVarRef(uniquePseudoVarName, firstOccuranceOwner, paths,
psuedoVarRecipient);
paths.setElementAt(var.getSelect(), firstOccuranceIndex);
numPathsFound++;
}
return numPathsFound;
}
/**
* Count the steps in a given location path.
*
* @param lpi
* The location path iterator that owns the steps.
* @return The number of steps in the given location path.
*/
protected int countSteps(LocPathIterator lpi) {
if (lpi instanceof WalkingIterator) {
WalkingIterator wi = (WalkingIterator) lpi;
AxesWalker aw = wi.getFirstWalker();
int count = 0;
while (null != aw) {
count++;
aw = aw.getNextWalker();
}
return count;
} else
return 1;
}
/**
* Change the expression owned by the owner argument to a variable reference
* of the given name.
*
* Warning: For global vars, this function relies on the variable
* declaration to which it refers having been added just prior to this
* function being called, so that the reference index can be determined from
* the size of the global variables list minus one.
*
* @param varName
* The name of the variable which will be referenced.
* @param owner
* The owner of the expression which will be replaced by a
* variable ref.
* @param paths
* The paths list that the iterator came from, mainly to
* determine if this is a local or global reduction.
* @param psuedoVarRecipient
* The element within whose scope the variable is being inserted,
* possibly a StylesheetRoot.
*/
protected void changeToVarRef(QName varName, ExpressionOwner owner,
Vector paths, ElemTemplateElement psuedoVarRecipient) {
Variable varRef = (paths == m_absPaths) ? new VariableSafeAbsRef()
: new Variable();
varRef.setQName(varName);
if (paths == m_absPaths) {
StylesheetRoot root = (StylesheetRoot) psuedoVarRecipient;
Vector globalVars = root.getVariablesAndParamsComposed();
// Assume this operation is occuring just after the decl has
// been added.
varRef.setIndex(globalVars.size() - 1);
varRef.setIsGlobal(true);
}
owner.setExpression(varRef);
}
private synchronized static int getPseudoVarID() {
return m_uniquePseudoVarID++;
}
/**
* Create a psuedo variable reference that will represent the shared
* redundent XPath, and add it to the stylesheet.
*
* @param psuedoVarRecipient
* The broadest scope of where the variable should be inserted,
* usually an xsl:template or xsl:for-each.
* @param lpi
* The LocationPathIterator that the variable should represent.
* @param isGlobal
* true if the paths are global.
* @return The new psuedo var element.
*/
protected ElemVariable createPseudoVarDecl(
ElemTemplateElement psuedoVarRecipient, LocPathIterator lpi,
boolean isGlobal) throws org.w3c.dom.DOMException {
QName uniquePseudoVarName = new QName(PSUEDOVARNAMESPACE, "#"
+ getPseudoVarID());
if (isGlobal) {
return createGlobalPseudoVarDecl(uniquePseudoVarName,
(StylesheetRoot) psuedoVarRecipient, lpi);
} else
return createLocalPseudoVarDecl(uniquePseudoVarName,
psuedoVarRecipient, lpi);
}
/**
* Create a psuedo variable reference that will represent the shared
* redundent XPath, for a local reduction.
*
* @param uniquePseudoVarName
* The name of the new variable.
* @param stylesheetRoot
* The broadest scope of where the variable should be inserted,
* which must be a StylesheetRoot element in this case.
* @param lpi
* The LocationPathIterator that the variable should represent.
* @return null if the decl was not created, otherwise the new Pseudo var
* element.
*/
protected ElemVariable createGlobalPseudoVarDecl(QName uniquePseudoVarName,
StylesheetRoot stylesheetRoot, LocPathIterator lpi)
throws org.w3c.dom.DOMException {
ElemVariable psuedoVar = new ElemVariable();
psuedoVar.setIsTopLevel(true);
XPath xpath = new XPath(lpi);
psuedoVar.setSelect(xpath);
psuedoVar.setName(uniquePseudoVarName);
Vector globalVars = stylesheetRoot.getVariablesAndParamsComposed();
psuedoVar.setIndex(globalVars.size());
globalVars.addElement(psuedoVar);
return psuedoVar;
}
/**
* Create a psuedo variable reference that will represent the shared
* redundent XPath, for a local reduction.
*
* @param uniquePseudoVarName
* The name of the new variable.
* @param psuedoVarRecipient
* The broadest scope of where the variable should be inserted,
* usually an xsl:template or xsl:for-each.
* @param lpi
* The LocationPathIterator that the variable should represent.
* @return null if the decl was not created, otherwise the new Pseudo var
* element.
*/
protected ElemVariable createLocalPseudoVarDecl(QName uniquePseudoVarName,
ElemTemplateElement psuedoVarRecipient, LocPathIterator lpi)
throws org.w3c.dom.DOMException {
ElemVariable psuedoVar = new ElemVariablePsuedo();
XPath xpath = new XPath(lpi);
psuedoVar.setSelect(xpath);
psuedoVar.setName(uniquePseudoVarName);
ElemVariable var = addVarDeclToElem(psuedoVarRecipient, lpi, psuedoVar);
lpi.exprSetParent(var);
return var;
}
/**
* Add the given variable to the psuedoVarRecipient.
*/
protected ElemVariable addVarDeclToElem(
ElemTemplateElement psuedoVarRecipient, LocPathIterator lpi,
ElemVariable psuedoVar) throws org.w3c.dom.DOMException {
// Create psuedo variable element
ElemTemplateElement ete = psuedoVarRecipient.getFirstChildElem();
lpi.callVisitors(null, m_varNameCollector);
// If the location path contains variables, we have to insert the
// psuedo variable after the reference. (Otherwise, we want to
// insert it as close as possible to the top, so we'll be sure
// it is in scope for any other vars.
if (m_varNameCollector.getVarCount() > 0) {
ElemTemplateElement baseElem = getElemFromExpression(lpi);
ElemVariable varElem = getPrevVariableElem(baseElem);
while (null != varElem) {
if (m_varNameCollector.doesOccur(varElem.getName())) {
psuedoVarRecipient = varElem.getParentElem();
ete = varElem.getNextSiblingElem();
break;
}
varElem = getPrevVariableElem(varElem);
}
}
if ((null != ete)
&& (Constants.ELEMNAME_PARAMVARIABLE == ete.getXSLToken())) {
// Can't stick something in front of a param, so abandon! (see
// variable13.xsl)
if (isParam(lpi))
return null;
while (null != ete) {
ete = ete.getNextSiblingElem();
if ((null != ete)
&& Constants.ELEMNAME_PARAMVARIABLE != ete
.getXSLToken())
break;
}
}
psuedoVarRecipient.insertBefore(psuedoVar, ete);
m_varNameCollector.reset();
return psuedoVar;
}
/**
* Tell if the expr param is contained within an xsl:param.
*/
protected boolean isParam(ExpressionNode expr) {
while (null != expr) {
if (expr instanceof ElemTemplateElement)
break;
expr = expr.exprGetParent();
}
if (null != expr) {
ElemTemplateElement ete = (ElemTemplateElement) expr;
while (null != ete) {
int type = ete.getXSLToken();
switch (type) {
case Constants.ELEMNAME_PARAMVARIABLE:
return true;
case Constants.ELEMNAME_TEMPLATE:
case Constants.ELEMNAME_STYLESHEET:
return false;
}
ete = ete.getParentElem();
}
}
return false;
}
/**
* Find the previous occurance of a xsl:variable. Stop the search when a
* xsl:for-each, xsl:template, or xsl:stylesheet is encountered.
*
* @param elem
* Should be non-null template element.
* @return The first previous occurance of an xsl:variable or xsl:param, or
* null if none is found.
*/
protected ElemVariable getPrevVariableElem(ElemTemplateElement elem) {
// This could be somewhat optimized. since getPreviousSiblingElem is a
// fairly expensive operation.
while (null != (elem = getPrevElementWithinContext(elem))) {
int type = elem.getXSLToken();
if ((Constants.ELEMNAME_VARIABLE == type)
|| (Constants.ELEMNAME_PARAMVARIABLE == type)) {
return (ElemVariable) elem;
}
}
return null;
}
/**
* Get the previous sibling or parent of the given template, stopping at
* xsl:for-each, xsl:template, or xsl:stylesheet.
*
* @param elem
* Should be non-null template element.
* @return previous sibling or parent, or null if previous is xsl:for-each,
* xsl:template, or xsl:stylesheet.
*/
protected ElemTemplateElement getPrevElementWithinContext(
ElemTemplateElement elem) {
ElemTemplateElement prev = elem.getPreviousSiblingElem();
if (null == prev)
prev = elem.getParentElem();
if (null != prev) {
int type = prev.getXSLToken();
if ((Constants.ELEMNAME_FOREACH == type)
|| (Constants.ELEMNAME_TEMPLATE == type)
|| (Constants.ELEMNAME_STYLESHEET == type)) {
prev = null;
}
}
return prev;
}
/**
* From an XPath expression component, get the ElemTemplateElement owner.
*
* @param expr
* Should be static expression with proper parentage.
* @return Valid ElemTemplateElement, or throw a runtime exception if it is
* not found.
*/
protected ElemTemplateElement getElemFromExpression(Expression expr) {
ExpressionNode parent = expr.exprGetParent();
while (null != parent) {
if (parent instanceof ElemTemplateElement)
return (ElemTemplateElement) parent;
parent = parent.exprGetParent();
}
throw new RuntimeException(XSLMessages.createMessage(
XSLTErrorResources.ER_ASSERT_NO_TEMPLATE_PARENT, null));
// "Programmer's error! expr has no ElemTemplateElement parent!");
}
/**
* Tell if the given LocPathIterator is relative to an absolute path, i.e.
* in not dependent on the context.
*
* @return true if the LocPathIterator is not dependent on the context node.
*/
public boolean isAbsolute(LocPathIterator path) {
int analysis = path.getAnalysisBits();
boolean isAbs = (WalkerFactory.isSet(analysis, WalkerFactory.BIT_ROOT) || WalkerFactory
.isSet(analysis, WalkerFactory.BIT_ANY_DESCENDANT_FROM_ROOT));
if (isAbs) {
isAbs = m_absPathChecker.checkAbsolute(path);
}
return isAbs;
}
/**
* Visit a LocationPath.
*
* @param owner
* The owner of the expression, to which the expression can be
* reset if rewriting takes place.
* @param path
* The LocationPath object.
* @return true if the sub expressions should be traversed.
*/
@Override
public boolean visitLocationPath(ExpressionOwner owner, LocPathIterator path) {
// Don't optimize "." or single step variable paths.
// Both of these cases could use some further optimization by
// themselves.
if (path instanceof SelfIteratorNoPredicate) {
return true;
} else if (path instanceof WalkingIterator) {
WalkingIterator wi = (WalkingIterator) path;
AxesWalker aw = wi.getFirstWalker();
if ((aw instanceof FilterExprWalker)
&& (null == aw.getNextWalker())) {
FilterExprWalker few = (FilterExprWalker) aw;
Expression exp = few.getInnerExpression();
if (exp instanceof Variable)
return true;
}
}
if (isAbsolute(path) && (null != m_absPaths)) {
if (DEBUG)
validateNewAddition(m_absPaths, owner, path);
m_absPaths.addElement(owner);
} else if (m_isSameContext && (null != m_paths)) {
if (DEBUG)
validateNewAddition(m_paths, owner, path);
m_paths.addElement(owner);
}
return true;
}
/**
* Visit a predicate within a location path. Note that there isn't a proper
* unique component for predicates, and that the expression will be called
* also for whatever type Expression is.
*
* @param owner
* The owner of the expression, to which the expression can be
* reset if rewriting takes place.
* @param pred
* The predicate object.
* @return true if the sub expressions should be traversed.
*/
@Override
public boolean visitPredicate(ExpressionOwner owner, Expression pred) {
boolean savedIsSame = m_isSameContext;
m_isSameContext = false;
// Any further down, just collect the absolute paths.
pred.callVisitors(owner, this);
m_isSameContext = savedIsSame;
// We've already gone down the subtree, so don't go have the caller
// go any further.
return false;
}
/**
* Visit an XSLT top-level instruction.
*
* @param elem
* The xsl instruction element object.
* @return true if the sub expressions should be traversed.
*/
@Override
public boolean visitTopLevelInstruction(ElemTemplateElement elem) {
int type = elem.getXSLToken();
switch (type) {
case Constants.ELEMNAME_TEMPLATE:
return visitInstruction(elem);
default:
return true;
}
}
/**
* Visit an XSLT instruction. Any element that isn't called by one of the
* other visit methods, will be called by this method.
*
* @param elem
* The xsl instruction element object.
* @return true if the sub expressions should be traversed.
*/
@Override
public boolean visitInstruction(ElemTemplateElement elem) {
int type = elem.getXSLToken();
switch (type) {
case Constants.ELEMNAME_CALLTEMPLATE:
case Constants.ELEMNAME_TEMPLATE:
case Constants.ELEMNAME_FOREACH: {
// Just get the select value.
if (type == Constants.ELEMNAME_FOREACH) {
ElemForEach efe = (ElemForEach) elem;
Expression select = efe.getSelect();
select.callVisitors(efe, this);
}
Vector savedPaths = m_paths;
m_paths = new Vector();
// Visit children. Call the superclass callChildVisitors, because
// we don't want to visit the xsl:for-each select attribute, or, for
// that matter, the xsl:template's match attribute.
elem.callChildVisitors(this, false);
eleminateRedundentLocals(elem);
m_paths = savedPaths;
// select.callVisitors(efe, this);
return false;
}
case Constants.ELEMNAME_NUMBER:
case Constants.ELEMNAME_SORT:
// Just collect absolute paths until and unless we can fully
// analyze these cases.
boolean savedIsSame = m_isSameContext;
m_isSameContext = false;
elem.callChildVisitors(this);
m_isSameContext = savedIsSame;
return false;
default:
return true;
}
}
// ==== DIAGNOSTIC AND DEBUG FUNCTIONS ====
/**
* Print out to std err the number of paths reduced.
*/
protected void diagnoseNumPaths(Vector paths, int numPathsEliminated,
int numUniquePathsEliminated) {
if (numPathsEliminated > 0) {
if (paths == m_paths) {
System.err.println("Eliminated " + numPathsEliminated
+ " total paths!");
System.err.println("Consolodated " + numUniquePathsEliminated
+ " redundent paths!");
} else {
System.err.println("Eliminated " + numPathsEliminated
+ " total global paths!");
System.err.println("Consolodated " + numUniquePathsEliminated
+ " redundent global paths!");
}
}
}
/**
* Assert that the expression is a LocPathIterator, and, if not, try to give
* some diagnostic info.
*/
private final void assertIsLocPathIterator(Expression expr1,
ExpressionOwner eo) throws RuntimeException {
if (!(expr1 instanceof LocPathIterator)) {
String errMsg;
if (expr1 instanceof Variable) {
errMsg = "Programmer's assertion: expr1 not an iterator: "
+ ((Variable) expr1).getQName();
} else {
errMsg = "Programmer's assertion: expr1 not an iterator: "
+ expr1.getClass().getName();
}
throw new RuntimeException(errMsg + ", " + eo.getClass().getName()
+ " " + expr1.exprGetParent());
}
}
/**
* Validate some assumptions about the new LocPathIterator and it's owner
* and the state of the list.
*/
private static void validateNewAddition(Vector paths,
ExpressionOwner owner, LocPathIterator path)
throws RuntimeException {
assertion(owner.getExpression() == path,
"owner.getExpression() != path!!!");
int n = paths.size();
// There should never be any duplicates in the list!
for (int i = 0; i < n; i++) {
ExpressionOwner ew = (ExpressionOwner) paths.elementAt(i);
assertion(ew != owner, "duplicate owner on the list!!!");
assertion(ew.getExpression() != path,
"duplicate expression on the list!!!");
}
}
/**
* Simple assertion.
*/
protected static void assertion(boolean b, String msg) {
if (!b) {
throw new RuntimeException(XSLMessages.createMessage(
XSLTErrorResources.ER_ASSERT_REDUNDENT_EXPR_ELIMINATOR,
new Object[] { msg }));
// "Programmer's assertion in RundundentExprEliminator: "+msg);
}
}
/**
* Since we want to sort multistep expressions by length, use a linked list
* with elements of type MultistepExprHolder.
*/
class MultistepExprHolder implements Cloneable {
ExpressionOwner m_exprOwner; // Will change to null once we have
// processed this item.
final int m_stepCount;
MultistepExprHolder m_next;
/**
* Clone this object.
*/
@Override
public Object clone() throws CloneNotSupportedException {
return super.clone();
}
/**
* Create a MultistepExprHolder.
*
* @param exprOwner
* the owner of the expression we are holding. It must hold a
* LocationPathIterator.
* @param stepCount
* The number of steps in the location path.
*/
MultistepExprHolder(ExpressionOwner exprOwner, int stepCount,
MultistepExprHolder next) {
m_exprOwner = exprOwner;
assertion(null != m_exprOwner, "exprOwner can not be null!");
m_stepCount = stepCount;
m_next = next;
}
/**
* Add a new MultistepExprHolder in sorted order in the list.
*
* @param exprOwner
* the owner of the expression we are holding. It must hold a
* LocationPathIterator.
* @param stepCount
* The number of steps in the location path.
* @return The new head of the linked list.
*/
MultistepExprHolder addInSortedOrder(ExpressionOwner exprOwner,
int stepCount) {
MultistepExprHolder first = this;
MultistepExprHolder next = this;
MultistepExprHolder prev = null;
while (null != next) {
if (stepCount >= next.m_stepCount) {
MultistepExprHolder newholder = new MultistepExprHolder(
exprOwner, stepCount, next);
if (null == prev)
first = newholder;
else
prev.m_next = newholder;
return first;
}
prev = next;
next = next.m_next;
}
prev.m_next = new MultistepExprHolder(exprOwner, stepCount, null);
return first;
}
/**
* Remove the given element from the list. 'this' should be the head of
* the list. If the item to be removed is not found, an assertion will
* be made.
*
* @param itemToRemove
* The item to remove from the list.
* @return The head of the list, which may have changed if itemToRemove
* is the same as this element. Null if the item to remove is
* the only item in the list.
*/
MultistepExprHolder unlink(MultistepExprHolder itemToRemove) {
MultistepExprHolder first = this;
MultistepExprHolder next = this;
MultistepExprHolder prev = null;
while (null != next) {
if (next == itemToRemove) {
if (null == prev)
first = next.m_next;
else
prev.m_next = next.m_next;
next.m_next = null;
return first;
}
prev = next;
next = next.m_next;
}
assertion(false, "unlink failed!!!");
return null;
}
/**
* Get the number of linked list items.
*/
int getLength() {
int count = 0;
MultistepExprHolder next = this;
while (null != next) {
count++;
next = next.m_next;
}
return count;
}
/**
* Print diagnostics out for the multistep list.
*/
protected void diagnose() {
System.err.print("Found multistep iterators: " + this.getLength()
+ " ");
MultistepExprHolder next = this;
while (null != next) {
System.err.print("" + next.m_stepCount);
next = next.m_next;
if (null != next)
System.err.print(", ");
}
System.err.println();
}
}
}