blob: 210c01bd1eb4e0ecbfe619a6d5e1981d6b897644 [file] [log] [blame]
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
<channel>
<title>Articles | Eclipse MOSAIC – A Multi-Domain and Multi-Scale Simulation Framework for Connected and Automated Mobility</title>
<link>https://staging.eclipse.org/mosaic/post/</link>
<atom:link href="https://staging.eclipse.org/mosaic/post/index.xml" rel="self" type="application/rss+xml" />
<description>Articles</description>
<generator>Source Themes Academic (https://sourcethemes.com/academic/)</generator><language>en-us</language><lastBuildDate>Wed, 10 Mar 2021 00:00:00 +0000</lastBuildDate>
<image>
<url>https://staging.eclipse.org/mosaic/images/logo.svg</url>
<title>Articles</title>
<link>https://staging.eclipse.org/mosaic/post/</link>
</image>
<item>
<title>2021 Spring Release of Eclipse MOSAIC</title>
<link>https://staging.eclipse.org/mosaic/post/release-21-0/</link>
<pubDate>Wed, 10 Mar 2021 00:00:00 +0000</pubDate>
<guid>https://staging.eclipse.org/mosaic/post/release-21-0/</guid>
<description>&lt;p&gt;&lt;strong&gt;The spring release has arrived! The committer team from Fraunhofer FOKUS and DCAITI is proud to present Eclipse MOSAIC 21.0 to the open source community.
This new version focuses on a much better integration of SUMO configurations, and introduces a new Server entity to the Application Simulator.&lt;/strong&gt;&lt;/p&gt;
&lt;p&gt;You can find the new version in our
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/download/&#34;&gt;
Download section
&lt;/a&gt;
, and in our
&lt;a href=&#34;https://github.com/eclipse/mosaic&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
GitHub repository
&lt;/a&gt;
.&lt;/p&gt;
&lt;p&gt;Please note our
&lt;a href=&#34;#migration-guide&#34;&gt;
Migration Guide
&lt;/a&gt;
below when updating Eclipse MOSAIC.&lt;/p&gt;
&lt;h3 id=&#34;release-date&#34;&gt;Release Date&lt;/h3&gt;
&lt;p&gt;2021-03-10&lt;/p&gt;
&lt;h3 id=&#34;changelog&#34;&gt;Changelog&lt;/h3&gt;
&lt;pre&gt;&lt;code class=&#34;language-shell&#34;&gt;[T+] It is now possible to map applications on vehicles which are defined in SUMO configurations.
[T+] Simplified the internal road network model for a better integration of existing SUMO scenarios.
[C+] Implemented much faster reachability check in SNS.
[A+] Added the possibility to map an application on all existing traffic lights at once.
[A+] New simulation entity for Server applications.
[M-] Fixes a minor bug in the contains check of polygons
[M+] Added complete documentation for most configuration files to the website.
[M+] Added a new tutorial showcasing the integration of existing SUMO configurations.
[T+] Now supports SUMO 1.8.0
&lt;/code&gt;&lt;/pre&gt;
&lt;p&gt;⭐ A huge thanks to all contributors who participated in this release:
&lt;a href=&#34;https://github.com/fabmax&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
&lt;i class=&#34;fab fa-github&#34;&gt;&lt;/i&gt; fabmax
&lt;/a&gt;
,
&lt;a href=&#34;https://github.com/kschrab&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
&lt;i class=&#34;fab fa-github&#34;&gt;&lt;/i&gt; kschrab
&lt;/a&gt;
,
&lt;a href=&#34;https://github.com/paguos&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
&lt;i class=&#34;fab fa-github&#34;&gt;&lt;/i&gt; paguos
&lt;/a&gt;
,
&lt;a href=&#34;https://github.com/schwepmo&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
&lt;i class=&#34;fab fa-github&#34;&gt;&lt;/i&gt; schwepmo
&lt;/a&gt;
, and
&lt;a href=&#34;https://github.com/vogtfa&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
&lt;i class=&#34;fab fa-github&#34;&gt;&lt;/i&gt; vogtva
&lt;/a&gt;
&lt;/p&gt;
&lt;h3 id=&#34;migration-guide&#34;&gt;Migration Guide&lt;/h3&gt;
&lt;p&gt;With the improved integration of SUMO scenarios it is now possible to create a MOSAIC scenario based on any
existing SUMO scenario (&lt;code&gt;*.sumocfg&lt;/code&gt;, &lt;code&gt;*.net.xml&lt;/code&gt;, and &lt;code&gt;*.rou.xml&lt;/code&gt;). To achieve, we had to adjust our
road network model in a way that it matches better the network representation of SUMO.&lt;/p&gt;
&lt;p&gt;&lt;strong&gt;This adjustment, however, affects all existing MOSAIC scenarios.&lt;/strong&gt;&lt;/p&gt;
&lt;p&gt;The following steps should be followed if you want to migrate your already existing MOSAIC scenario to the latest version:&lt;/p&gt;
&lt;ol&gt;
&lt;li&gt;Download the newest version of
&lt;a href=&#34;https://www.dcaiti.tu-berlin.de/research/simulation/download&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
scenario-convert
&lt;/a&gt;
.&lt;/li&gt;
&lt;li&gt;Run &lt;code&gt;scenario-convert --update -d path/to/database.db&lt;/code&gt; to update the database file of your scenario.&lt;/li&gt;
&lt;li&gt;Run &lt;code&gt;scenario-convert --db2sumo -d path/to/database.db&lt;/code&gt; to generate a new SUMO network.&lt;/li&gt;
&lt;li&gt;Move the generated &lt;code&gt;*.net.xml&lt;/code&gt; file to the &lt;code&gt;sumo&lt;/code&gt; directory of your scenario and replace the existing one with it.&lt;/li&gt;
&lt;/ol&gt;
&lt;p&gt;If you need further advice, please head over to our all new
&lt;a href=&#34;https://github.com/eclipse/mosaic/discussions&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
discussion board
&lt;/a&gt;
.&lt;/p&gt;
&lt;hr&gt;
&lt;blockquote&gt;
&lt;p&gt;&lt;em&gt;Changelog Legend&lt;/em&gt;&lt;/p&gt;
&lt;p&gt;&lt;code&gt;[M]&lt;/code&gt; &lt;em&gt;Eclipse MOSAIC&lt;/em&gt;&lt;br&gt;
&lt;code&gt;[A]&lt;/code&gt; &lt;em&gt;Application simulator&lt;/em&gt;&lt;br&gt;
&lt;code&gt;[B]&lt;/code&gt; &lt;em&gt;Battery simulator&lt;/em&gt;&lt;br&gt;
&lt;code&gt;[C]&lt;/code&gt; &lt;em&gt;Communication simulator&lt;/em&gt;&lt;br&gt;
&lt;code&gt;[E]&lt;/code&gt; &lt;em&gt;Environment simulator&lt;/em&gt;&lt;br&gt;
&lt;code&gt;[N]&lt;/code&gt; &lt;em&gt;Navigation component&lt;/em&gt;&lt;br&gt;
&lt;code&gt;[S]&lt;/code&gt; &lt;em&gt;Scenario-convert&lt;/em&gt;&lt;br&gt;
&lt;code&gt;[T]&lt;/code&gt; &lt;em&gt;Traffic simulator&lt;/em&gt;&lt;br&gt;
&lt;code&gt;[+/-]&lt;/code&gt; &lt;em&gt;new Feature/Bugfix&lt;/em&gt;&lt;/p&gt;
&lt;/blockquote&gt;
</description>
</item>
<item>
<title>Testing Remote-Operated Driving virtually with Eclipse MOSAIC</title>
<link>https://staging.eclipse.org/mosaic/post/remote-operated-driving/</link>
<pubDate>Fri, 26 Feb 2021 00:00:00 +0000</pubDate>
<guid>https://staging.eclipse.org/mosaic/post/remote-operated-driving/</guid>
<description>&lt;p&gt;&lt;img src=&#34;overview.png&#34; alt=&#34;alternative text for search engines&#34;&gt;&lt;/p&gt;
&lt;p&gt;&lt;strong&gt;Remote-Operated Driving&lt;/strong&gt; is the bridge technology from human towards fully automated driving.
In situations outside the driving domain of a highly-automated vehicle, e.g. if data is missing, or the autonomous function is unsure to
make a certain decision, remote-operation is the key. Also, in other use-cases, remote-operated driving is a helpful
technique, e.g. for driving electric car-sharing vehicles to their charging stations, or maneuvering vehicles remotely through
a parking garage.&lt;/p&gt;
&lt;p&gt;In all those use-cases, a human operator would &amp;ldquo;steer&amp;rdquo; the vehicle remotely. All sensor information would be sent over the 5G network
to the operator who can then decide on the action or trajectory the vehicle should follow. The information the operator
receives could be any sensor data from the vehicle, such as camera data, LiDAR data,
or already compiled information like detected objects and free space.
With Mobile Edge Computing and sensor fusion, the information could be enriched by other vehicles or stationary sensors.&lt;/p&gt;
&lt;p&gt;Virtual Testing with MOSAIC helps to dive deeper into this topic. This study bases on LiDAR data for presentation of the operator view,
which allows selecting different viewing angles as well as sensor fusion of different perspectives from other vehicles for a
holistic environment model. The final result can be seen in the video below.&lt;/p&gt;
&lt;div style=&#34;position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden;&#34;&gt;
&lt;iframe src=&#34;https://www.youtube.com/embed/KC5ZTy1CDz8&#34; style=&#34;position: absolute; top: 0; left: 0; width: 100%; height: 100%; border:0;&#34; allowfullscreen title=&#34;YouTube Video&#34;&gt;&lt;/iframe&gt;
&lt;/div&gt;
&lt;br/&gt;
&lt;p&gt;Eclipse MOSAIC has been used to couple the vehicle simulator PHABMACS with the MOSAIC Application
simulator, in which a custom application has been deployed providing the operator view.
The vehicle simulator PHABMACS is responsible for vehicle dynamics and sensor data, in this case LiDAR data.
The message exchange of LiDAR as well as vehicle control data has been simulated by integrating the MOSAIC Cell simulator.
In this way, we could analyze the influence of communication properties, e.g. latencies and
different connection qualities such as low capacities or packet losses, on the application.
For the hybrid test setup with virtual world and real application for the human operators,
the whole simulation has to run in real time, which is possible with Eclipse MOSAIC (see parameter &lt;code&gt;--realtime-brake 1&lt;/code&gt;).&lt;/p&gt;
&lt;p&gt;&lt;img src=&#34;overview_mosaic.png&#34; alt=&#34;Tele-Operated Driving Simulation with Eclipse MOSAIC&#34;&gt;&lt;/p&gt;
</description>
</item>
<item>
<title>Studying Traffic Control Algorithms in MOSAIC</title>
<link>https://staging.eclipse.org/mosaic/post/traffic-control/</link>
<pubDate>Mon, 18 Jan 2021 00:00:00 +0000</pubDate>
<guid>https://staging.eclipse.org/mosaic/post/traffic-control/</guid>
<description>&lt;p&gt;&lt;strong&gt;The simulative investigation of communication-based Traffic Management solutions requires combining models from different domains. Eclipse MOSAIC suits very well for this purpose as it couples multiple simulators to model vehicle movement pattern, infrastructure sensors, (variable) traffic signs, as well as different communication links (ITS-G5, 4G/5G) between vehicles and backends, and the application logic in entities like vehicles and a Traffic Management Center.&lt;/strong&gt;&lt;/p&gt;
&lt;p&gt;&lt;img src=&#34;featured.png&#34; alt=&#34;alternative text for search engines&#34;&gt;&lt;/p&gt;
&lt;p&gt;In a recent study, we analyzed future traffic estimation and control algorithms towards their use on highways
with special focus on mixed traffic of conventional vehicles, connected vehicles, and autonomous vehicles. Connected
vehicles share telematic information with a Traffic Management Center (TMC) which can then estimate the traffic state
and initiate control mechanisms to improve traffic efficiency either via variable message signs as part of the infrastructure, or via V2X communication directly addressing connected vehicles in order to share
speed and lane change advices with the vehicles on the road (e.g. via ETSI IVI message). In a further step,
dynamic lane assignments have been established, which dedicate lanes to autonomous vehicles only to enable
efficient platooning maneuvers. The individual highlights of Eclipse MOSAIC for simulating such a traffic management system are visualized in the video.&lt;/p&gt;
&lt;video controls style=&#34;width:55%&#34;&gt;
&lt;source src=&#34;https://owncloud.fokus.fraunhofer.de/index.php/s/LclLTzGQ0BdziIn/download&#34; type=&#34;video/mp4&#34;&gt;
&lt;/video&gt;
&lt;p&gt;With &lt;strong&gt;Eclipse MOSAIC&lt;/strong&gt; this system has been modelled and simulated with all its various aspects in order to analyze
efficiency improvements of such estimation and control algorithms. As traffic simulator, we employed
&lt;strong&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/traffic_simulator_sumo/&#34;&gt;
Eclipse SUMO
&lt;/a&gt;
&lt;/strong&gt;, which already provides a basic
model for variable &lt;em&gt;speed&lt;/em&gt; signs. However, the preferred
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/vms_simulator/&#34;&gt;
MOSAIC VMS Simulator
&lt;/a&gt;
realizes a more flexible concept with the dynamic control of the VMS during simulation runtime, including &lt;em&gt;arbitrary sign semantics&lt;/em&gt; additional
to &lt;em&gt;speed&lt;/em&gt; and featuring a visibility range. The interplay of information from infrastructure elements as well as communicated information
has been modelled in detail with applications covering realistic behavior of human drivers and autonomous vehicles. Additionally,
real estimation and control algorithms from external suppliers have been integrated into the simulation to
provide a software-in-the-loop environment. The &lt;strong&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/application_mapping/&#34;&gt;
MOSAIC Mapping
&lt;/a&gt;
&lt;/strong&gt;
allowed for a comprehensive configuration of the different application components to the simulated entities (variously equipped vehicles, RSUs and a TMC cloud server).&lt;/p&gt;
&lt;p&gt;The final result was a complex simulation scenario for Eclipse MOSAIC,
including a calibrated traffic model, various application and behavior models for automated, connected and conventional vehicles,
different communication links via ITS-G5 and cellular communication, infrastructure models for sensors and variable message signs, and
a new evaluation component in order to gain statistics out of a simulation.&lt;/p&gt;
&lt;table&gt;
&lt;thead&gt;
&lt;tr&gt;
&lt;th style=&#34;text-align:left&#34;&gt;Requirement&lt;/th&gt;
&lt;th style=&#34;text-align:center&#34;&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/traffic_simulator_sumo/&#34;&gt;
SUMO
&lt;/a&gt;
&lt;/th&gt;
&lt;th style=&#34;text-align:center&#34;&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/application_simulator/&#34;&gt;
MOSAIC Application
&lt;/a&gt;
&lt;/th&gt;
&lt;th style=&#34;text-align:center&#34;&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/network_simulator_cell/&#34;&gt;
MOSAIC Cell
&lt;/a&gt;
&lt;/th&gt;
&lt;th style=&#34;text-align:center&#34;&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/network_simulator_sns/&#34;&gt;
MOSAIC SNS
&lt;/a&gt;
&lt;/th&gt;
&lt;th style=&#34;text-align:center&#34;&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/vms_simulator/&#34;&gt;
MOSAIC VMS
&lt;/a&gt;
&lt;/th&gt;
&lt;th style=&#34;text-align:center&#34;&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/visualization/statistics/&#34;&gt;
MOSAIC Output
&lt;/a&gt;
&lt;/th&gt;
&lt;/tr&gt;
&lt;/thead&gt;
&lt;tbody&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Simulate Vehicle Traffic on Highways&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Measure Traffic Properties (Flow, Density)&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Control Traffic dynamically via VMS&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;(X)&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Exchange V2X Messages via ITS-G5 and 4G/5G&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Include Vehicle Functions which react on IVIM&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Model Traffic Management Center Facilities&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Integrate real TMC algorithms in Simulation&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Include Roadside Units with custom Functionality&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Generate aggregated Statistics from the Simulation&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;/tr&gt;
&lt;tr&gt;
&lt;td style=&#34;text-align:left&#34;&gt;Generated Detailed Simulation Logs&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;(X)&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;&lt;/td&gt;
&lt;td style=&#34;text-align:center&#34;&gt;X&lt;/td&gt;
&lt;/tr&gt;
&lt;/tbody&gt;
&lt;/table&gt;
&lt;h3 id=&#34;the-simulation-setup&#34;&gt;The Simulation Setup&lt;/h3&gt;
&lt;p&gt;The traffic model in this scenario has been created using real toll-data for the highway AP7 in northern Spain, provided
by the Spanish toll road management (
&lt;a href=&#34;https://www.abertis.com&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
Abertis Infraestructuras, S.A.
&lt;/a&gt;
). Based on this data, traffic has been
generated in Eclipse SUMO and calibrated in a way,
that the simulated traffic resembles the original toll data as close as possible. This procedure has been done for the
complete highway AP7 and resulted in more than 500.000 vehicles per day in the simulation. However, it would not make real sense
to analyze a whole highway stretch, as the control algorithms under test apply very local changes. Therefore, we decided to extract
a reduced traffic scenario from the calibrated one by measuring the vehicle movements within a smaller area only. Based on those
measurements we were able to create a realistic traffic model on a stretch of 25 kilometers length near Girona.&lt;/p&gt;
&lt;figure id=&#34;figure-the-test-site-modelled-in-eclipse-mosaic&#34;&gt;
&lt;a data-fancybox=&#34;&#34; href=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/test-site_huc9e68466259c66b25b58dd1cb0735621_545645_2000x2000_fit_lanczos_2.png&#34; data-caption=&#34;The test site modelled in Eclipse MOSAIC&#34;&gt;
&lt;img data-src=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/test-site_huc9e68466259c66b25b58dd1cb0735621_545645_2000x2000_fit_lanczos_2.png&#34; class=&#34;lazyload&#34; alt=&#34;&#34; width=&#34;45%&#34; height=&#34;551&#34;&gt;
&lt;/a&gt;
&lt;figcaption data-pre=&#34;Figure &#34; data-post=&#34;:&#34; class=&#34;numbered&#34;&gt;
The test site modelled in Eclipse MOSAIC
&lt;/figcaption&gt;
&lt;/figure&gt;
&lt;p&gt;For modelling the infrastructure, the highway has been divided into so-called segments. Each segment, roughly 500m in length, contains
spot sensors at the entry of each segment to measure traffic flow, lane area detectors which model cameras to measure traffic density, and
Variable Message Signs (VMS) displaying speed limits and lane assignments. Modelling VMS was achieved by the new
simulator &lt;strong&gt;MOSAIC VMS&lt;/strong&gt;, which let vehicles &amp;ldquo;see&amp;rdquo; oncoming traffic signs showing speed limits or lane assignments. An additional
behavior model for vehicles implemented in the MOSAIC Application Simulator could react on those instructions accordingly.&lt;/p&gt;
&lt;p&gt;The segmentation of the highway was very important for the traffic estimation and control algorithms which have been integrated into the scenario. Those
algorithms, provided by the
&lt;a href=&#34;https://www.pem.tuc.gr/index.php?id=5257&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
Technical University of Crete
&lt;/a&gt;
, can
estimate the traffic volume on highways using traditional sensors, but also by receiving CAM messages of connected vehicles. Based on the
traffic estimation, additional algorithms can control the traffic by setting speed limits on VMS, or by sending V2X messages (e.g. ETSI IVI messages)
with speed recommendations or lane change advices to individual vehicles. The control algorithms were written in C++ and have already been used in real
traffic management centers. For this study, we integrated them into the
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/application_simulator/&#34;&gt;
MOSAIC Application
&lt;/a&gt;
Simulator using the Java Native Interface (JNI).&lt;/p&gt;
&lt;figure id=&#34;figure-integration-of-traffic-control-algorithms-into-mosaic-application-using-jni&#34;&gt;
&lt;a data-fancybox=&#34;&#34; href=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/teac-jni_hu8eedbfac73273995571fbc96a05c851b_31297_2000x2000_fit_lanczos_2.png&#34; data-caption=&#34;Integration of Traffic Control Algorithms into MOSAIC Application using JNI&#34;&gt;
&lt;img data-src=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/teac-jni_hu8eedbfac73273995571fbc96a05c851b_31297_2000x2000_fit_lanczos_2.png&#34; class=&#34;lazyload&#34; alt=&#34;&#34; width=&#34;45%&#34; height=&#34;632&#34;&gt;
&lt;/a&gt;
&lt;figcaption data-pre=&#34;Figure &#34; data-post=&#34;:&#34; class=&#34;numbered&#34;&gt;
Integration of Traffic Control Algorithms into MOSAIC Application using JNI
&lt;/figcaption&gt;
&lt;/figure&gt;
&lt;p&gt;The estimation algorithms rely on information from vehicles and control algorithms are able to send back advices. Therefore, communication
links are required to exchange V2X messages. To achieve this, two separate communications links have been modelled by integrating
the &lt;strong&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/network_simulator_sns/&#34;&gt;
MOSAIC Simple Network Simulator
&lt;/a&gt;
&lt;/strong&gt; for ITS-G5 communication,
and the &lt;strong&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/network_simulator_cell/&#34;&gt;
MOSAIC Cell Simulator
&lt;/a&gt;
&lt;/strong&gt; for cellular communication (e.g. 5G or LTE-V2X).
In the former case, vehicles exchanged message with Road Side Units along the road, which then forwarded the information to the Traffic Management
Center (TMC). In the latter case, vehicles were directly connected to the TMC.&lt;/p&gt;
&lt;p&gt;Finally, application models for connected and automated vehicles have been integrated by using the
&lt;strong&gt;
&lt;a href=&#34;https://staging.eclipse.org/mosaic/mosaic/docs/simulators/application_simulator/&#34;&gt;
MOSAIC Application Simulator
&lt;/a&gt;
&lt;/strong&gt;. With the help of these applications
vehicles could react on advices sent by the TMC. Depending on the SAE level of the vehicle in the simulation, the vehicles
would execute a certain advice immediately after some safety checks (fully automated vehicle) or with a certain delay
(connected vehicle with a human driver reacting on a lane-change advice).&lt;/p&gt;
&lt;h3 id=&#34;evaluations&#34;&gt;Evaluations&lt;/h3&gt;
&lt;p&gt;In a first study, we took a closer look onto the main traffic flow control (MTFC) in general. This algorithm measures the traffic volume
on the highway and adjusts the speed limits shown on VMS based on the current flow and density. In many cases, traffic collapses
near on-ramps when traffic flow on the highway is already high and additional vehicles are entering, resulting in a capacity drop
on the highway and thereby congestion further upstream. To avoid this from happening, the controller reduces the average speed
of the main flow resulting in more capacity available at the bottleneck. This effect could be shown in MOSAIC with the setup described
above as well, as shown in the Figure below. Here you can see, that the congestion which arises at the bottleneck near segment 30 can
be reduced by activating the controller.&lt;/p&gt;
&lt;figure id=&#34;figure-speed-over-time-on-the-highway-left-no-control-enabled-right-control-algorithm-active&#34;&gt;
&lt;a data-fancybox=&#34;&#34; href=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/teac-no-control-vs-control_hu3f36ae42f5012c9c73c42f4df7e25b4b_269788_2000x2000_fit_lanczos_2.png&#34; data-caption=&#34;Speed over time on the highway. Left no control enabled, right control algorithm active.&#34;&gt;
&lt;img data-src=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/teac-no-control-vs-control_hu3f36ae42f5012c9c73c42f4df7e25b4b_269788_2000x2000_fit_lanczos_2.png&#34; class=&#34;lazyload&#34; alt=&#34;&#34; width=&#34;70%&#34; height=&#34;400&#34;&gt;
&lt;/a&gt;
&lt;figcaption data-pre=&#34;Figure &#34; data-post=&#34;:&#34; class=&#34;numbered&#34;&gt;
Speed over time on the highway. Left no control enabled, right control algorithm active.
&lt;/figcaption&gt;
&lt;/figure&gt;
&lt;p&gt;In the previous case, the controller adjusted the speed limit shown on VMS along the highway. Those VMS were placed virtually every
500m along the highway, which would be very expensive to implement on real highways. Therefore, we reduced the number of
VMS placed along the highway and tested the algorithm again. VMS were now placed at strategic positions rather than equidistant. To be more
precisely, five VMS were placed between two consecutive on-ramps, having one VMS to control the speed near the bottleneck, three safety VMS which reduce
the speed stepwise further upstream, and one VMS after the on-ramp to release the vehicles from the control area. As a result, we
could spare over 60% of the VMS placed along the specific highway stretch without seeing much difference in the results.&lt;/p&gt;
&lt;figure id=&#34;figure-in-the-left-case-vms-are-placed-every-500m-in-the-right-case-only-few-vms-at-strategic-locations&#34;&gt;
&lt;a data-fancybox=&#34;&#34; href=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/teac-full-vms-vs-few-vms_hu3f36ae42f5012c9c73c42f4df7e25b4b_266372_2000x2000_fit_lanczos_2.png&#34; data-caption=&#34;In the left case, VMS are placed every 500m. In the right case only few VMS at strategic locations.&#34;&gt;
&lt;img data-src=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/teac-full-vms-vs-few-vms_hu3f36ae42f5012c9c73c42f4df7e25b4b_266372_2000x2000_fit_lanczos_2.png&#34; class=&#34;lazyload&#34; alt=&#34;&#34; width=&#34;70%&#34; height=&#34;400&#34;&gt;
&lt;/a&gt;
&lt;figcaption data-pre=&#34;Figure &#34; data-post=&#34;:&#34; class=&#34;numbered&#34;&gt;
In the left case, VMS are placed every 500m. In the right case only few VMS at strategic locations.
&lt;/figcaption&gt;
&lt;/figure&gt;
&lt;p&gt;In addition to controlling the traffic by setting VMS, vehicles do receive speed limits or speed advices via communication using IVI messages.
Those messages contain control decisions for each segment and are spread to the vehicles using ITS-G5 adhoc communication. For this purpose,
the simulation scenario is modelled in a way, that a road side unit is placed at each segment entry. Equipped vehicles adjust their speeds and
therefore control the traffic flow as a whole, as other vehicles (e.g. their followers) are forced to adjust their speeds as well. With this fact
given, we did another experiment in which we eliminated all VMS completely and sent speed limits only via V2X communication to
equipped vehicles. This, on one hand, already works with rather low penetration rates of 15 percent equipped vehicles, as shown in the Figure
below. Furthermore, the higher the penetration rate is, the better the controller works. For high penetration rates, this technique even surpasses the classic
approach via VMS slightly, as connected vehicles can react and controlled more precisely.&lt;/p&gt;
&lt;figure id=&#34;figure-in-the-left-case-traffic-is-controlled-via-vms-in-the-right-case-only-v2x-messages-are-utilized&#34;&gt;
&lt;a data-fancybox=&#34;&#34; href=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/teac-full-vms-vs-ivim_hu3f36ae42f5012c9c73c42f4df7e25b4b_269336_2000x2000_fit_lanczos_2.png&#34; data-caption=&#34;In the left case traffic is controlled via VMS. In the right case, only V2X messages are utilized.&#34;&gt;
&lt;img data-src=&#34;https://staging.eclipse.org/mosaic/mosaic/post/traffic-control/teac-full-vms-vs-ivim_hu3f36ae42f5012c9c73c42f4df7e25b4b_269336_2000x2000_fit_lanczos_2.png&#34; class=&#34;lazyload&#34; alt=&#34;&#34; width=&#34;70%&#34; height=&#34;400&#34;&gt;
&lt;/a&gt;
&lt;figcaption data-pre=&#34;Figure &#34; data-post=&#34;:&#34; class=&#34;numbered&#34;&gt;
In the left case traffic is controlled via VMS. In the right case, only V2X messages are utilized.
&lt;/figcaption&gt;
&lt;/figure&gt;
&lt;h3 id=&#34;conclusion&#34;&gt;Conclusion&lt;/h3&gt;
&lt;p&gt;We modelled complex traffic scenarios including road infrastructures (sensors, dynamic traffic signs, road side units), individual driving
behavior for different SAE levels. Furthermore, we integrated real algorithms for traffic estimation and control into MOSAIC Application
enabling software-in-the-loop tests. By creating and calibrating a highway scenario using real toll data, we could test different
traffic control techniques which showed that traffic flow on highways could be improved, even with novel approaches which do not
rely on classic infrastructure such as road sensors and Variable Message Signs, but almost solely on V2X communication.&lt;/p&gt;
&lt;hr&gt;
&lt;p&gt;
&lt;a href=&#34;https://www.inframix.eu/&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
&lt;img src=&#34;inframix.png&#34; alt=&#34;INFRAMIX EU&#34;&gt;
&lt;/a&gt;
&lt;/p&gt;
&lt;p&gt;This work was part of the
&lt;a href=&#34;https://www.inframix.eu&#34; target=&#34;_blank&#34; rel=&#34;noopener&#34;&gt;
INFRAMIX
&lt;/a&gt;
project. INFRAMIX has received funding from
the European Union&amp;rsquo;s Horizon 2020 research and innovation programme under grant
agreement no 723016.&lt;/p&gt;
</description>
</item>
<item>
<title>First Release of Eclipse MOSAIC</title>
<link>https://staging.eclipse.org/mosaic/post/release-20-0/</link>
<pubDate>Mon, 19 Oct 2020 00:00:00 +0000</pubDate>
<guid>https://staging.eclipse.org/mosaic/post/release-20-0/</guid>
<description>&lt;p&gt;&lt;strong&gt;The initial contribution is accomplished! With the autumn version, the committer team from Fraunhofer FOKUS and DCAITI is proud to release Eclipse MOSAIC 20.0 to the open source community. With the runtime infrastructure, core libraries and various implementations of simulators or couplings to existing ones, Eclipse MOSAIC includes the essential feature collection for simulation and virtual testing of connected and automated mobility solutions.&lt;/strong&gt;&lt;/p&gt;
&lt;h3 id=&#34;release-date&#34;&gt;Release Date&lt;/h3&gt;
&lt;p&gt;2020-10-19&lt;/p&gt;
&lt;h3 id=&#34;changelog&#34;&gt;Changelog&lt;/h3&gt;
&lt;pre&gt;&lt;code class=&#34;language-shell&#34;&gt;[M+] Moved main code to new public repository github-com/eclipse-mosaic
[M+] Changed license to EPL 2.0
[M+] Revised and refactored all public code.
[M+] Significantly improved and extended the documentation, including new tutorials
[M-] Replaced dependencies which are incompatible with EPL.
[M+] Major overhaul of configuration files, e.g.
* vsimrti/vsimrti_config.xml -&amp;gt; scenario_config.json
* etc/defaults.xml -&amp;gt; etc/runtime.json
[A+] Mapping configuration has been extended with new features (e.g. typeDistributions, parameter variations).
[A+] New API for traffic light applications
[C+] SNS supports most important Geo-Routing features for ad-hoc multihop communication
[T+] Now supports SUMO 1.7.0
&lt;/code&gt;&lt;/pre&gt;
&lt;p&gt;&lt;strong&gt;Changelog (Features and Bugfixes) Legend:&lt;/strong&gt;&lt;br&gt;
&lt;code&gt;[M]&lt;/code&gt; Eclipse MOSAIC&lt;br&gt;
&lt;code&gt;[A]&lt;/code&gt; Application simulator&lt;br&gt;
&lt;code&gt;[B]&lt;/code&gt; Battery simulator&lt;br&gt;
&lt;code&gt;[C]&lt;/code&gt; Communication simulator&lt;br&gt;
&lt;code&gt;[E]&lt;/code&gt; Environment simulator&lt;br&gt;
&lt;code&gt;[N]&lt;/code&gt; Navigation component&lt;br&gt;
&lt;code&gt;[S]&lt;/code&gt; Scenario-convert&lt;br&gt;
&lt;code&gt;[T]&lt;/code&gt; Traffic simulator&lt;br&gt;
&lt;code&gt;[+/-]&lt;/code&gt; new Feature/Bugfix&lt;/p&gt;
</description>
</item>
<item>
<title>Testing mobility scenarios with the Open-Source simulation environment Eclipse MOSAIC</title>
<link>https://staging.eclipse.org/mosaic/post/eclipse-mosaic/</link>
<pubDate>Fri, 16 Oct 2020 00:00:00 +0000</pubDate>
<guid>https://staging.eclipse.org/mosaic/post/eclipse-mosaic/</guid>
<description>&lt;p&gt;&lt;strong&gt;On the occasion of EclipseCon 2020, Fraunhofer FOKUS launches its simulation environment Eclipse MOSAIC. This solution is based on VSimRTI (Vehicle-2-X Simulation Runtime Infrastructure), which has been developed over the last 12 years in close cooperation with the DCAITI of the TU Berlin and has already been used by more than 600 partners to test mobility services and traffic scenarios. Eclipse MOSAIC is now partially available as open-source.&lt;/strong&gt;&lt;/p&gt;
&lt;p&gt;Whether dynamic lane assignment or traffic light phase assistant, new mobility services are designed to increase safety, efficiency, comfort, and facilitate environmentally friendly transport. The Eclipse MOSAIC simulation environment allows to explore how this can be achieved, before the services are tested in field trials on the road. Eclipse MOSAIC can also be used for testing driver assistance systems and to optimize the entire traffic.&lt;/p&gt;
&lt;h2 id=&#34;flexible-coupling-of-simulators&#34;&gt;Flexible coupling of simulators&lt;/h2&gt;
&lt;p&gt;Eclipse MOSAIC integrates, depending on the simulation scenario, different aspects like individual building blocks into a holistic system, e.g., traffic congestion, battery charging of electric cars, or communication between other road users and a central cloud. The level of detail for individual aspects is variable: from a rough mobility scenario for an entire city to detailed individual driving maneuvers.&lt;/p&gt;
&lt;p&gt;The open-source version of Eclipse MOSAIC already includes several simulators, e.g., Eclipse SUMO for traffic and OMNeT++ and ns-3 for communication. Further simulators can be coupled, e.g., Fraunhofer FOKUS offers the simulator PHABMACS for the realistic modeling of autonomous vehicles.&lt;/p&gt;
&lt;p&gt;In addition to the simulator coupling, Eclipse MOSAIC manages the following tasks:&lt;/p&gt;
&lt;ul&gt;
&lt;li&gt;Federation: Individual simulators are interchangeable within a scenario.&lt;/li&gt;
&lt;li&gt;Interaction: Information from one simulator is also taken into account by others.&lt;/li&gt;
&lt;li&gt;Time: All simulators run synchronously.&lt;/li&gt;
&lt;/ul&gt;
&lt;p&gt;Additionally, Eclipse MOSAIC offers several tools for evaluation and visualization of the results, which are also included in the open-source package.&lt;/p&gt;
&lt;p&gt;In the recently completed EU project INFRAMIX, Eclipse MOSAIC was used to test scenarios for the future road that allow mixed traffic between conventional and automated vehicles.&lt;/p&gt;
&lt;p&gt;Fraunhofer FOKUS has been a strategic development member of the Eclipse Foundation since May of this year and works in close cooperation with the partners of the working groups OpenMobility and openADx (Open Source for Autonomous Driving).&lt;/p&gt;
&lt;p&gt;Further information about Eclipse MOSAIC:
&lt;a href=&#34;https://www.eclipse.org/mosaic&#34;&gt;https://www.eclipse.org/mosaic&lt;/a&gt;
&lt;a href=&#34;https://github.com/eclipse/mosaic&#34;&gt;https://github.com/eclipse/mosaic&lt;/a&gt;&lt;/p&gt;
&lt;p&gt;Further information about INFRAMIX:
&lt;a href=&#34;https://www.fokus.fraunhofer.de/de/fokus/news/inframix-projekt_2020_08&#34;&gt;https://www.fokus.fraunhofer.de/de/fokus/news/inframix-projekt_2020_08&lt;/a&gt;&lt;/p&gt;
&lt;p&gt;Further information about EclipseCon:
&lt;a href=&#34;https://www.eclipsecon.org/2020&#34;&gt;https://www.eclipsecon.org/2020&lt;/a&gt;&lt;/p&gt;
</description>
</item>
</channel>
</rss>