blob: 5985e4b6dd42161e01615fc5528fa0ebef941a77 [file] [log] [blame]
/* *******************************************************************
* Copyright (c) 2002 Palo Alto Research Center, Incorporated (PARC).
* All rights reserved.
* This program and the accompanying materials are made available
* under the terms of the Eclipse Public License v1.0
* which accompanies this distribution and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* PARC initial implementation
* Alexandre Vasseur @AspectJ ITDs
* ******************************************************************/
package org.aspectj.weaver;
import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;
import org.aspectj.bridge.IMessage;
import org.aspectj.bridge.ISourceLocation;
import org.aspectj.bridge.Message;
import org.aspectj.bridge.MessageUtil;
import org.aspectj.util.FuzzyBoolean;
import org.aspectj.weaver.AjAttribute.WeaverVersionInfo;
import org.aspectj.weaver.Iterators.Getter;
import org.aspectj.weaver.patterns.Declare;
import org.aspectj.weaver.patterns.PerClause;
public abstract class ResolvedType extends UnresolvedType implements AnnotatedElement {
public static final ResolvedType[] EMPTY_RESOLVED_TYPE_ARRAY = new ResolvedType[0];
public static final String PARAMETERIZED_TYPE_IDENTIFIER = "P";
// Set temporarily during a type pattern match call - this currently used to hold the
// annotations that may be attached to a type when it used as a parameter
public ResolvedType[] temporaryAnnotationTypes;
private ResolvedType[] resolvedTypeParams;
private String binaryPath;
protected World world;
protected int bits;
private static int AnnotationBitsInitialized = 0x0001;
private static int AnnotationMarkedInherited = 0x0002;
private static int MungersAnalyzed = 0x0004;
private static int HasParentMunger = 0x0008;
private static int TypeHierarchyCompleteBit = 0x0010;
private static int GroovyObjectInitialized = 0x0020;
private static int IsGroovyObject = 0x0040;
protected ResolvedType(String signature, World world) {
super(signature);
this.world = world;
}
protected ResolvedType(String signature, String signatureErasure, World world) {
super(signature, signatureErasure);
this.world = world;
}
public int getSize() {
return 1;
}
/**
* Returns an iterator through ResolvedType objects representing all the direct supertypes of this type. That is, through the
* superclass, if any, and all declared interfaces.
*/
public final Iterator<ResolvedType> getDirectSupertypes() {
Iterator<ResolvedType> interfacesIterator = Iterators.array(getDeclaredInterfaces());
ResolvedType superclass = getSuperclass();
if (superclass == null) {
return interfacesIterator;
} else {
return Iterators.snoc(interfacesIterator, superclass);
}
}
public abstract ResolvedMember[] getDeclaredFields();
public abstract ResolvedMember[] getDeclaredMethods();
public abstract ResolvedType[] getDeclaredInterfaces();
public abstract ResolvedMember[] getDeclaredPointcuts();
public boolean isCacheable() {
return true;
}
/**
* @return the superclass of this type, or null (if this represents a jlObject, primitive, or void)
*/
public abstract ResolvedType getSuperclass();
public abstract int getModifiers();
// return true if this resolved type couldn't be found (but we know it's name maybe)
public boolean isMissing() {
return false;
}
// FIXME asc I wonder if in some circumstances MissingWithKnownSignature
// should not be considered
// 'really' missing as some code can continue based solely on the signature
public static boolean isMissing(UnresolvedType unresolved) {
if (unresolved instanceof ResolvedType) {
ResolvedType resolved = (ResolvedType) unresolved;
return resolved.isMissing();
} else {
return (unresolved == MISSING);
}
}
public ResolvedType[] getAnnotationTypes() {
return EMPTY_RESOLVED_TYPE_ARRAY;
}
public AnnotationAJ getAnnotationOfType(UnresolvedType ofType) {
return null;
}
// public final UnresolvedType getSuperclass(World world) {
// return getSuperclass();
// }
// This set contains pairs of types whose signatures are concatenated
// together, this means with a fast lookup we can tell if two types
// are equivalent.
protected static Set<String> validBoxing = new HashSet<String>();
static {
validBoxing.add("Ljava/lang/Byte;B");
validBoxing.add("Ljava/lang/Character;C");
validBoxing.add("Ljava/lang/Double;D");
validBoxing.add("Ljava/lang/Float;F");
validBoxing.add("Ljava/lang/Integer;I");
validBoxing.add("Ljava/lang/Long;J");
validBoxing.add("Ljava/lang/Short;S");
validBoxing.add("Ljava/lang/Boolean;Z");
validBoxing.add("BLjava/lang/Byte;");
validBoxing.add("CLjava/lang/Character;");
validBoxing.add("DLjava/lang/Double;");
validBoxing.add("FLjava/lang/Float;");
validBoxing.add("ILjava/lang/Integer;");
validBoxing.add("JLjava/lang/Long;");
validBoxing.add("SLjava/lang/Short;");
validBoxing.add("ZLjava/lang/Boolean;");
}
// utilities
public ResolvedType getResolvedComponentType() {
return null;
}
public World getWorld() {
return world;
}
// ---- things from object
@Override
public boolean equals(Object other) {
if (other instanceof ResolvedType) {
return this == other;
} else {
return super.equals(other);
}
}
// ---- difficult things
/**
* returns an iterator through all of the fields of this type, in order for checking from JVM spec 2ed 5.4.3.2. This means that
* the order is
* <p/>
* <ul>
* <li>fields from current class</li>
* <li>recur into direct superinterfaces</li>
* <li>recur into superclass</li>
* </ul>
* <p/>
* We keep a hashSet of interfaces that we've visited so we don't spiral out into 2^n land.
*/
public Iterator<ResolvedMember> getFields() {
final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
public Iterator<ResolvedType> get(ResolvedType o) {
return dupFilter.filter(o.getDirectSupertypes());
}
};
return Iterators.mapOver(Iterators.recur(this, typeGetter), FieldGetterInstance);
}
/**
* returns an iterator through all of the methods of this type, in order for checking from JVM spec 2ed 5.4.3.3. This means that
* the order is
* <p/>
* <ul>
* <li>methods from current class</li>
* <li>recur into superclass, all the way up, not touching interfaces</li>
* <li>recur into all superinterfaces, in some unspecified order (but those 'closest' to this type are first)</li>
* </ul>
* <p/>
*
* @param wantGenerics is true if the caller would like all generics information, otherwise those methods are collapsed to their
* erasure
*/
public Iterator<ResolvedMember> getMethods(boolean wantGenerics, boolean wantDeclaredParents) {
return Iterators.mapOver(getHierarchy(wantGenerics, wantDeclaredParents), MethodGetterInstance);
}
public Iterator<ResolvedMember> getMethodsIncludingIntertypeDeclarations(boolean wantGenerics, boolean wantDeclaredParents) {
return Iterators.mapOver(getHierarchy(wantGenerics, wantDeclaredParents), MethodGetterWithItdsInstance);
}
/**
* An Iterators.Getter that returns an iterator over all methods declared on some resolved type.
*/
private static class MethodGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
public Iterator<ResolvedMember> get(ResolvedType type) {
return Iterators.array(type.getDeclaredMethods());
}
}
/**
* An Iterators.Getter that returns an iterator over all pointcuts declared on some resolved type.
*/
private static class PointcutGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
public Iterator<ResolvedMember> get(ResolvedType o) {
return Iterators.array(o.getDeclaredPointcuts());
}
}
// OPTIMIZE could cache the result of discovering ITDs
// Getter that returns all declared methods for a type through an iterator - including intertype declarations
private static class MethodGetterIncludingItds implements Iterators.Getter<ResolvedType, ResolvedMember> {
public Iterator<ResolvedMember> get(ResolvedType type) {
ResolvedMember[] methods = type.getDeclaredMethods();
if (type.interTypeMungers != null) {
int additional = 0;
for (ConcreteTypeMunger typeTransformer : type.interTypeMungers) {
ResolvedMember rm = typeTransformer.getSignature();
// BUG won't this include fields? When we are looking for methods
if (rm != null) { // new parent type munger can have null signature
additional++;
}
}
if (additional > 0) {
ResolvedMember[] methods2 = new ResolvedMember[methods.length + additional];
System.arraycopy(methods, 0, methods2, 0, methods.length);
additional = methods.length;
for (ConcreteTypeMunger typeTransformer : type.interTypeMungers) {
ResolvedMember rm = typeTransformer.getSignature();
if (rm != null) { // new parent type munger can have null signature
methods2[additional++] = typeTransformer.getSignature();
}
}
methods = methods2;
}
}
return Iterators.array(methods);
}
}
/**
* An Iterators.Getter that returns an iterator over all fields declared on some resolved type.
*/
private static class FieldGetter implements Iterators.Getter<ResolvedType, ResolvedMember> {
public Iterator<ResolvedMember> get(ResolvedType type) {
return Iterators.array(type.getDeclaredFields());
}
}
private final static MethodGetter MethodGetterInstance = new MethodGetter();
private final static MethodGetterIncludingItds MethodGetterWithItdsInstance = new MethodGetterIncludingItds();
private final static PointcutGetter PointcutGetterInstance = new PointcutGetter();
private final static FieldGetter FieldGetterInstance = new FieldGetter();
/**
* Return an iterator over the types in this types hierarchy - starting with this type first, then all superclasses up to Object
* and then all interfaces (starting with those 'nearest' this type).
*
* @param wantGenerics true if the caller wants full generic information
* @param wantDeclaredParents true if the caller even wants those parents introduced via declare parents
* @return an iterator over all types in the hierarchy of this type
*/
public Iterator<ResolvedType> getHierarchy() {
return getHierarchy(false, false);
}
public Iterator<ResolvedType> getHierarchy(final boolean wantGenerics, final boolean wantDeclaredParents) {
final Iterators.Getter<ResolvedType, ResolvedType> interfaceGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
List<String> alreadySeen = new ArrayList<String>(); // Strings are signatures (ResolvedType.getSignature())
public Iterator<ResolvedType> get(ResolvedType type) {
ResolvedType[] interfaces = type.getDeclaredInterfaces();
// remove interfaces introduced by declare parents
// relatively expensive but hopefully uncommon
if (!wantDeclaredParents && type.hasNewParentMungers()) {
// Throw away interfaces from that array if they were decp'd onto here
List<Integer> forRemoval = new ArrayList<Integer>();
for (ConcreteTypeMunger munger : type.interTypeMungers) {
if (munger.getMunger() != null) {
ResolvedTypeMunger m = munger.getMunger();
if (m.getKind() == ResolvedTypeMunger.Parent) {
ResolvedType newType = ((NewParentTypeMunger) m).getNewParent();
if (!wantGenerics && newType.isParameterizedOrGenericType()) {
newType = newType.getRawType();
}
for (int ii = 0; ii < interfaces.length; ii++) {
ResolvedType iface = interfaces[ii];
if (!wantGenerics && iface.isParameterizedOrGenericType()) {
iface = iface.getRawType();
}
if (newType.getSignature().equals(iface.getSignature())) { // pr171953
forRemoval.add(ii);
}
}
}
}
}
// Found some to remove from those we are going to iterate over
if (forRemoval.size() > 0) {
ResolvedType[] interfaces2 = new ResolvedType[interfaces.length - forRemoval.size()];
int p = 0;
for (int ii = 0; ii < interfaces.length; ii++) {
if (!forRemoval.contains(ii)) {
interfaces2[p++] = interfaces[ii];
}
}
interfaces = interfaces2;
}
}
return new Iterators.ResolvedTypeArrayIterator(interfaces, alreadySeen, wantGenerics);
}
};
// If this type is an interface, there are only interfaces to walk
if (this.isInterface()) {
return new SuperInterfaceWalker(interfaceGetter, this);
} else {
SuperInterfaceWalker superInterfaceWalker = new SuperInterfaceWalker(interfaceGetter);
Iterator<ResolvedType> superClassesIterator = new SuperClassWalker(this, superInterfaceWalker, wantGenerics);
// append() will check if the second iterator is empty before appending - but the types which the superInterfaceWalker
// needs to visit are only accumulated whilst the superClassesIterator is in progress
return Iterators.append1(superClassesIterator, superInterfaceWalker);
}
}
/**
* Return a list of methods, first those declared on this class, then those declared on the superclass (recurse) and then those
* declared on the superinterfaces. This is expensive - use the getMethods() method if you can!
*/
public List<ResolvedMember> getMethodsWithoutIterator(boolean includeITDs, boolean allowMissing, boolean genericsAware) {
List<ResolvedMember> methods = new ArrayList<ResolvedMember>();
Set<String> knowninterfaces = new HashSet<String>();
addAndRecurse(knowninterfaces, methods, this, includeITDs, allowMissing, genericsAware);
return methods;
}
/**
* Return a list of the types in the hierarchy of this type, starting with this type. The order in the list is the superclasses
* followed by the super interfaces.
*
* @param genericsAware should the list include parameterized/generic types (if not, they will be collapsed to raw)?
* @return list of resolvedtypes in this types hierarchy, including this type first
*/
public List<ResolvedType> getHierarchyWithoutIterator(boolean includeITDs, boolean allowMissing, boolean genericsAware) {
List<ResolvedType> types = new ArrayList<ResolvedType>();
Set<String> visited = new HashSet<String>();
recurseHierarchy(visited, types, this, includeITDs, allowMissing, genericsAware);
return types;
}
private void addAndRecurse(Set<String> knowninterfaces, List<ResolvedMember> collector, ResolvedType resolvedType,
boolean includeITDs, boolean allowMissing, boolean genericsAware) {
// Add the methods declared on this type
collector.addAll(Arrays.asList(resolvedType.getDeclaredMethods()));
// now add all the inter-typed members too
if (includeITDs && resolvedType.interTypeMungers != null) {
for (ConcreteTypeMunger typeTransformer : interTypeMungers) {
ResolvedMember rm = typeTransformer.getSignature();
if (rm != null) { // new parent type munger can have null signature
collector.add(typeTransformer.getSignature());
}
}
}
// BUG? interface type superclass is Object - is that correct?
if (!resolvedType.isInterface() && !resolvedType.equals(ResolvedType.OBJECT)) {
ResolvedType superType = resolvedType.getSuperclass();
if (superType != null && !superType.isMissing()) {
if (!genericsAware && superType.isParameterizedOrGenericType()) {
superType = superType.getRawType();
}
// Recurse if we are not at the top
addAndRecurse(knowninterfaces, collector, superType, includeITDs, allowMissing, genericsAware);
}
}
// Go through the interfaces on the way back down
ResolvedType[] interfaces = resolvedType.getDeclaredInterfaces();
for (int i = 0; i < interfaces.length; i++) {
ResolvedType iface = interfaces[i];
if (!genericsAware && iface.isParameterizedOrGenericType()) {
iface = iface.getRawType();
}
// we need to know if it is an interface from Parent kind munger
// as those are used for @AJ ITD and we precisely want to skip those
boolean shouldSkip = false;
for (int j = 0; j < resolvedType.interTypeMungers.size(); j++) {
ConcreteTypeMunger munger = resolvedType.interTypeMungers.get(j);
if (munger.getMunger() != null && munger.getMunger().getKind() == ResolvedTypeMunger.Parent
&& ((NewParentTypeMunger) munger.getMunger()).getNewParent().equals(iface) // pr171953
) {
shouldSkip = true;
break;
}
}
// Do not do interfaces more than once
if (!shouldSkip && !knowninterfaces.contains(iface.getSignature())) {
knowninterfaces.add(iface.getSignature());
if (allowMissing && iface.isMissing()) {
if (iface instanceof MissingResolvedTypeWithKnownSignature) {
((MissingResolvedTypeWithKnownSignature) iface).raiseWarningOnMissingInterfaceWhilstFindingMethods();
}
} else {
addAndRecurse(knowninterfaces, collector, iface, includeITDs, allowMissing, genericsAware);
}
}
}
}
/**
* Recurse up a type hierarchy, first the superclasses then the super interfaces.
*/
private void recurseHierarchy(Set<String> knowninterfaces, List<ResolvedType> collector, ResolvedType resolvedType,
boolean includeITDs, boolean allowMissing, boolean genericsAware) {
collector.add(resolvedType);
if (!resolvedType.isInterface() && !resolvedType.equals(ResolvedType.OBJECT)) {
ResolvedType superType = resolvedType.getSuperclass();
if (superType != null && !superType.isMissing()) {
if (!genericsAware && (superType.isParameterizedType() || superType.isGenericType())) {
superType = superType.getRawType();
}
// Recurse if we are not at the top
recurseHierarchy(knowninterfaces, collector, superType, includeITDs, allowMissing, genericsAware);
}
}
// Go through the interfaces on the way back down
ResolvedType[] interfaces = resolvedType.getDeclaredInterfaces();
for (int i = 0; i < interfaces.length; i++) {
ResolvedType iface = interfaces[i];
if (!genericsAware && (iface.isParameterizedType() || iface.isGenericType())) {
iface = iface.getRawType();
}
// we need to know if it is an interface from Parent kind munger
// as those are used for @AJ ITD and we precisely want to skip those
boolean shouldSkip = false;
for (int j = 0; j < resolvedType.interTypeMungers.size(); j++) {
ConcreteTypeMunger munger = resolvedType.interTypeMungers.get(j);
if (munger.getMunger() != null && munger.getMunger().getKind() == ResolvedTypeMunger.Parent
&& ((NewParentTypeMunger) munger.getMunger()).getNewParent().equals(iface) // pr171953
) {
shouldSkip = true;
break;
}
}
// Do not do interfaces more than once
if (!shouldSkip && !knowninterfaces.contains(iface.getSignature())) {
knowninterfaces.add(iface.getSignature());
if (allowMissing && iface.isMissing()) {
if (iface instanceof MissingResolvedTypeWithKnownSignature) {
((MissingResolvedTypeWithKnownSignature) iface).raiseWarningOnMissingInterfaceWhilstFindingMethods();
}
} else {
recurseHierarchy(knowninterfaces, collector, iface, includeITDs, allowMissing, genericsAware);
}
}
}
}
public ResolvedType[] getResolvedTypeParameters() {
if (resolvedTypeParams == null) {
resolvedTypeParams = world.resolve(typeParameters);
}
return resolvedTypeParams;
}
/**
* described in JVM spec 2ed 5.4.3.2
*/
public ResolvedMember lookupField(Member field) {
Iterator<ResolvedMember> i = getFields();
while (i.hasNext()) {
ResolvedMember resolvedMember = i.next();
if (matches(resolvedMember, field)) {
return resolvedMember;
}
if (resolvedMember.hasBackingGenericMember() && field.getName().equals(resolvedMember.getName())) {
// might be worth checking the member behind the parameterized member (see pr137496)
if (matches(resolvedMember.getBackingGenericMember(), field)) {
return resolvedMember;
}
}
}
return null;
}
/**
* described in JVM spec 2ed 5.4.3.3. Doesnt check ITDs.
*
* <p>
* Check the current type for the method. If it is not found, check the super class and any super interfaces. Taking care not to
* process interfaces multiple times.
*/
public ResolvedMember lookupMethod(Member m) {
List<ResolvedType> typesTolookat = new ArrayList<ResolvedType>();
typesTolookat.add(this);
int pos = 0;
while (pos < typesTolookat.size()) {
ResolvedType type = typesTolookat.get(pos++);
if (!type.isMissing()) {
ResolvedMember[] methods = type.getDeclaredMethods();
if (methods != null) {
for (int i = 0; i < methods.length; i++) {
ResolvedMember method = methods[i];
if (matches(method, m)) {
return method;
}
// might be worth checking the method behind the parameterized method (137496)
if (method.hasBackingGenericMember() && m.getName().equals(method.getName())) {
if (matches(method.getBackingGenericMember(), m)) {
return method;
}
}
}
}
}
// Queue the superclass:
ResolvedType superclass = type.getSuperclass();
if (superclass != null) {
typesTolookat.add(superclass);
}
// Queue any interfaces not already checked:
ResolvedType[] superinterfaces = type.getDeclaredInterfaces();
if (superinterfaces != null) {
for (int i = 0; i < superinterfaces.length; i++) {
ResolvedType interf = superinterfaces[i];
if (!typesTolookat.contains(interf)) {
typesTolookat.add(interf);
}
}
}
}
return null;
}
/**
* @param member the member to lookup in intertype declarations affecting this type
* @return the real signature defined by any matching intertype declaration, otherwise null
*/
public ResolvedMember lookupMethodInITDs(Member member) {
for (ConcreteTypeMunger typeTransformer : interTypeMungers) {
if (matches(typeTransformer.getSignature(), member)) {
return typeTransformer.getSignature();
}
}
return null;
}
/**
* return null if not found
*/
private ResolvedMember lookupMember(Member m, ResolvedMember[] a) {
for (int i = 0; i < a.length; i++) {
ResolvedMember f = a[i];
if (matches(f, m)) {
return f;
}
}
return null;
}
// Bug (1) Do callers expect ITDs to be involved in the lookup? or do they do their own walk over ITDs?
/**
* Looks for the first member in the hierarchy matching aMember. This method differs from lookupMember(Member) in that it takes
* into account parameters which are type variables - which clearly an unresolved Member cannot do since it does not know
* anything about type variables.
*/
public ResolvedMember lookupResolvedMember(ResolvedMember aMember, boolean allowMissing, boolean eraseGenerics) {
Iterator<ResolvedMember> toSearch = null;
ResolvedMember found = null;
if ((aMember.getKind() == Member.METHOD) || (aMember.getKind() == Member.CONSTRUCTOR)) {
// toSearch = getMethodsWithoutIterator(true, allowMissing, !eraseGenerics).iterator();
toSearch = getMethodsIncludingIntertypeDeclarations(!eraseGenerics, true);
} else if (aMember.getKind()==Member.ADVICE) {
return null;
} else {
assert aMember.getKind() == Member.FIELD;
toSearch = getFields();
}
while (toSearch.hasNext()) {
ResolvedMember candidate = toSearch.next();
if (eraseGenerics) {
if (candidate.hasBackingGenericMember()) {
candidate = candidate.getBackingGenericMember();
}
}
// OPTIMIZE speed up matches? optimize order of checks
if (candidate.matches(aMember, eraseGenerics)) {
found = candidate;
break;
}
}
return found;
}
public static boolean matches(Member m1, Member m2) {
if (m1 == null) {
return m2 == null;
}
if (m2 == null) {
return false;
}
// Check the names
boolean equalNames = m1.getName().equals(m2.getName());
if (!equalNames) {
return false;
}
// Check the signatures
boolean equalSignatures = m1.getSignature().equals(m2.getSignature());
if (equalSignatures) {
return true;
}
// If they aren't the same, we need to allow for covariance ... where
// one sig might be ()LCar; and
// the subsig might be ()LFastCar; - where FastCar is a subclass of Car
boolean equalCovariantSignatures = m1.getParameterSignature().equals(m2.getParameterSignature());
if (equalCovariantSignatures) {
return true;
}
return false;
}
public static boolean conflictingSignature(Member m1, Member m2) {
return conflictingSignature(m1,m2,true);
}
/**
* Do the two members conflict? Due to the change in 1.7.1, field itds on interfaces now act like 'default' fields - so types implementing
* those fields get the field if they don't have it already, otherwise they keep what they have. The conflict detection below had to be
* altered. Previously (<1.7.1) it is not a conflict if the declaring types are different. With v2itds it may still be a conflict if the
* declaring types are different.
*/
public static boolean conflictingSignature(Member m1, Member m2, boolean v2itds) {
if (m1 == null || m2 == null) {
return false;
}
if (!m1.getName().equals(m2.getName())) {
return false;
}
if (m1.getKind() != m2.getKind()) {
return false;
}
if (m1.getKind() == Member.FIELD) {
if (v2itds) {
if (m1.getDeclaringType().equals(m2.getDeclaringType())) {
return true;
}
} else {
return m1.getDeclaringType().equals(m2.getDeclaringType());
}
} else if (m1.getKind() == Member.POINTCUT) {
return true;
}
UnresolvedType[] p1 = m1.getGenericParameterTypes();
UnresolvedType[] p2 = m2.getGenericParameterTypes();
if (p1 == null) {
p1 = m1.getParameterTypes();
}
if (p2 == null) {
p2 = m2.getParameterTypes();
}
int n = p1.length;
if (n != p2.length) {
return false;
}
for (int i = 0; i < n; i++) {
if (!p1[i].equals(p2[i])) {
return false;
}
}
return true;
}
/**
* returns an iterator through all of the pointcuts of this type, in order for checking from JVM spec 2ed 5.4.3.2 (as for
* fields). This means that the order is
* <p/>
* <ul>
* <li>pointcuts from current class</li>
* <li>recur into direct superinterfaces</li>
* <li>recur into superclass</li>
* </ul>
* <p/>
* We keep a hashSet of interfaces that we've visited so we don't spiral out into 2^n land.
*/
public Iterator<ResolvedMember> getPointcuts() {
final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
// same order as fields
Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
public Iterator<ResolvedType> get(ResolvedType o) {
return dupFilter.filter(o.getDirectSupertypes());
}
};
return Iterators.mapOver(Iterators.recur(this, typeGetter), PointcutGetterInstance);
}
public ResolvedPointcutDefinition findPointcut(String name) {
for (Iterator<ResolvedMember> i = getPointcuts(); i.hasNext();) {
ResolvedPointcutDefinition f = (ResolvedPointcutDefinition) i.next();
// the ResolvedPointcutDefinition can be null if there are other problems that prevented its resolution
if (f != null && name.equals(f.getName())) {
return f;
}
}
// pr120521
if (!getOutermostType().equals(this)) {
ResolvedType outerType = getOutermostType().resolve(world);
ResolvedPointcutDefinition rpd = outerType.findPointcut(name);
return rpd;
}
return null; // should we throw an exception here?
}
// all about collecting CrosscuttingMembers
// ??? collecting data-structure, shouldn't really be a field
public CrosscuttingMembers crosscuttingMembers;
public CrosscuttingMembers collectCrosscuttingMembers(boolean shouldConcretizeIfNeeded) {
crosscuttingMembers = new CrosscuttingMembers(this, shouldConcretizeIfNeeded);
if (getPerClause() == null) {
return crosscuttingMembers;
}
crosscuttingMembers.setPerClause(getPerClause());
crosscuttingMembers.addShadowMungers(collectShadowMungers());
// GENERICITDFIX
// crosscuttingMembers.addTypeMungers(collectTypeMungers());
crosscuttingMembers.addTypeMungers(getTypeMungers());
// FIXME AV - skip but needed ?? or ??
// crosscuttingMembers.addLateTypeMungers(getLateTypeMungers());
crosscuttingMembers.addDeclares(collectDeclares(!this.doesNotExposeShadowMungers()));
crosscuttingMembers.addPrivilegedAccesses(getPrivilegedAccesses());
// System.err.println("collected cc members: " + this + ", " +
// collectDeclares());
return crosscuttingMembers;
}
public final List<Declare> collectDeclares(boolean includeAdviceLike) {
if (!this.isAspect()) {
return Collections.emptyList();
}
List<Declare> ret = new ArrayList<Declare>();
// if (this.isAbstract()) {
// for (Iterator i = getDeclares().iterator(); i.hasNext();) {
// Declare dec = (Declare) i.next();
// if (!dec.isAdviceLike()) ret.add(dec);
// }
//
// if (!includeAdviceLike) return ret;
if (!this.isAbstract()) {
// ret.addAll(getDeclares());
final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
public Iterator<ResolvedType> get(ResolvedType o) {
return dupFilter.filter((o).getDirectSupertypes());
}
};
Iterator<ResolvedType> typeIterator = Iterators.recur(this, typeGetter);
while (typeIterator.hasNext()) {
ResolvedType ty = typeIterator.next();
// System.out.println("super: " + ty + ", " + );
for (Iterator<Declare> i = ty.getDeclares().iterator(); i.hasNext();) {
Declare dec = i.next();
if (dec.isAdviceLike()) {
if (includeAdviceLike) {
ret.add(dec);
}
} else {
ret.add(dec);
}
}
}
}
return ret;
}
private final List<ShadowMunger> collectShadowMungers() {
if (!this.isAspect() || this.isAbstract() || this.doesNotExposeShadowMungers()) {
return Collections.emptyList();
}
List<ShadowMunger> acc = new ArrayList<ShadowMunger>();
final Iterators.Filter<ResolvedType> dupFilter = Iterators.dupFilter();
Iterators.Getter<ResolvedType, ResolvedType> typeGetter = new Iterators.Getter<ResolvedType, ResolvedType>() {
public Iterator<ResolvedType> get(ResolvedType o) {
return dupFilter.filter((o).getDirectSupertypes());
}
};
Iterator<ResolvedType> typeIterator = Iterators.recur(this, typeGetter);
while (typeIterator.hasNext()) {
ResolvedType ty = typeIterator.next();
acc.addAll(ty.getDeclaredShadowMungers());
}
return acc;
}
public void addParent(ResolvedType newParent) {
// Nothing to do for anything except a ReferenceType
}
protected boolean doesNotExposeShadowMungers() {
return false;
}
public PerClause getPerClause() {
return null;
}
public Collection<Declare> getDeclares() {
return Collections.emptyList();
}
public Collection<ConcreteTypeMunger> getTypeMungers() {
return Collections.emptyList();
}
public Collection<ResolvedMember> getPrivilegedAccesses() {
return Collections.emptyList();
}
// ---- useful things
public final boolean isInterface() {
return Modifier.isInterface(getModifiers());
}
public final boolean isAbstract() {
return Modifier.isAbstract(getModifiers());
}
public boolean isClass() {
return false;
}
public boolean isAspect() {
return false;
}
public boolean isAnnotationStyleAspect() {
return false;
}
/**
* Note: Only overridden by Name subtype.
*/
public boolean isEnum() {
return false;
}
/**
* Note: Only overridden by Name subtype.
*/
public boolean isAnnotation() {
return false;
}
public boolean isAnonymous() {
return false;
}
public boolean isNested() {
return false;
}
public ResolvedType getOuterClass() {
return null;
}
public void addAnnotation(AnnotationAJ annotationX) {
throw new RuntimeException("ResolvedType.addAnnotation() should never be called");
}
public AnnotationAJ[] getAnnotations() {
throw new RuntimeException("ResolvedType.getAnnotations() should never be called");
}
public boolean hasAnnotations() {
throw new RuntimeException("ResolvedType.getAnnotations() should never be called");
}
/**
* Note: Only overridden by ReferenceType subtype
*/
public boolean canAnnotationTargetType() {
return false;
}
/**
* Note: Only overridden by ReferenceType subtype
*/
public AnnotationTargetKind[] getAnnotationTargetKinds() {
return null;
}
/**
* Note: Only overridden by Name subtype.
*/
public boolean isAnnotationWithRuntimeRetention() {
return false;
}
public boolean isSynthetic() {
return signature.indexOf("$ajc") != -1;
}
public final boolean isFinal() {
return Modifier.isFinal(getModifiers());
}
protected Map<String, UnresolvedType> getMemberParameterizationMap() {
if (!isParameterizedType()) {
return Collections.emptyMap();
}
TypeVariable[] tvs = getGenericType().getTypeVariables();
Map<String, UnresolvedType> parameterizationMap = new HashMap<String, UnresolvedType>();
for (int i = 0; i < tvs.length; i++) {
parameterizationMap.put(tvs[i].getName(), typeParameters[i]);
}
return parameterizationMap;
}
public List<ShadowMunger> getDeclaredAdvice() {
List<ShadowMunger> l = new ArrayList<ShadowMunger>();
ResolvedMember[] methods = getDeclaredMethods();
if (isParameterizedType()) {
methods = getGenericType().getDeclaredMethods();
}
Map<String, UnresolvedType> typeVariableMap = getAjMemberParameterizationMap();
for (int i = 0, len = methods.length; i < len; i++) {
ShadowMunger munger = methods[i].getAssociatedShadowMunger();
if (munger != null) {
if (ajMembersNeedParameterization()) {
// munger.setPointcut(munger.getPointcut().parameterizeWith(
// typeVariableMap));
munger = munger.parameterizeWith(this, typeVariableMap);
if (munger instanceof Advice) {
Advice advice = (Advice) munger;
// update to use the parameterized signature...
UnresolvedType[] ptypes = methods[i].getGenericParameterTypes();
UnresolvedType[] newPTypes = new UnresolvedType[ptypes.length];
for (int j = 0; j < ptypes.length; j++) {
if (ptypes[j] instanceof TypeVariableReferenceType) {
TypeVariableReferenceType tvrt = (TypeVariableReferenceType) ptypes[j];
if (typeVariableMap.containsKey(tvrt.getTypeVariable().getName())) {
newPTypes[j] = typeVariableMap.get(tvrt.getTypeVariable().getName());
} else {
newPTypes[j] = ptypes[j];
}
} else {
newPTypes[j] = ptypes[j];
}
}
advice.setBindingParameterTypes(newPTypes);
}
}
munger.setDeclaringType(this);
l.add(munger);
}
}
return l;
}
public List<ShadowMunger> getDeclaredShadowMungers() {
return getDeclaredAdvice();
}
// ---- only for testing!
public ResolvedMember[] getDeclaredJavaFields() {
return filterInJavaVisible(getDeclaredFields());
}
public ResolvedMember[] getDeclaredJavaMethods() {
return filterInJavaVisible(getDeclaredMethods());
}
private ResolvedMember[] filterInJavaVisible(ResolvedMember[] ms) {
List<ResolvedMember> l = new ArrayList<ResolvedMember>();
for (int i = 0, len = ms.length; i < len; i++) {
if (!ms[i].isAjSynthetic() && ms[i].getAssociatedShadowMunger() == null) {
l.add(ms[i]);
}
}
return l.toArray(new ResolvedMember[l.size()]);
}
public abstract ISourceContext getSourceContext();
// ---- fields
public static final ResolvedType[] NONE = new ResolvedType[0];
public static final ResolvedType[] EMPTY_ARRAY = NONE;
public static final Missing MISSING = new Missing();
// ---- types
public static ResolvedType makeArray(ResolvedType type, int dim) {
if (dim == 0) {
return type;
}
ResolvedType array = new ArrayReferenceType("[" + type.getSignature(), "[" + type.getErasureSignature(), type.getWorld(),
type);
return makeArray(array, dim - 1);
}
static class Primitive extends ResolvedType {
private final int size;
private final int index;
Primitive(String signature, int size, int index) {
super(signature, null);
this.size = size;
this.index = index;
this.typeKind = TypeKind.PRIMITIVE;
}
@Override
public final int getSize() {
return size;
}
@Override
public final int getModifiers() {
return Modifier.PUBLIC | Modifier.FINAL;
}
@Override
public final boolean isPrimitiveType() {
return true;
}
public boolean hasAnnotation(UnresolvedType ofType) {
return false;
}
@Override
public final boolean isAssignableFrom(ResolvedType other) {
if (!other.isPrimitiveType()) {
if (!world.isInJava5Mode()) {
return false;
}
return validBoxing.contains(this.getSignature() + other.getSignature());
}
return assignTable[((Primitive) other).index][index];
}
@Override
public final boolean isAssignableFrom(ResolvedType other, boolean allowMissing) {
return isAssignableFrom(other);
}
@Override
public final boolean isCoerceableFrom(ResolvedType other) {
if (this == other) {
return true;
}
if (!other.isPrimitiveType()) {
return false;
}
if (index > 6 || ((Primitive) other).index > 6) {
return false;
}
return true;
}
@Override
public ResolvedType resolve(World world) {
if (this.world != world) {
throw new IllegalStateException();
}
this.world = world;
return super.resolve(world);
}
@Override
public final boolean needsNoConversionFrom(ResolvedType other) {
if (!other.isPrimitiveType()) {
return false;
}
return noConvertTable[((Primitive) other).index][index];
}
private static final boolean[][] assignTable = {// to: B C D F I J S V Z
// from
{ true, true, true, true, true, true, true, false, false }, // B
{ false, true, true, true, true, true, false, false, false }, // C
{ false, false, true, false, false, false, false, false, false }, // D
{ false, false, true, true, false, false, false, false, false }, // F
{ false, false, true, true, true, true, false, false, false }, // I
{ false, false, true, true, false, true, false, false, false }, // J
{ false, false, true, true, true, true, true, false, false }, // S
{ false, false, false, false, false, false, false, true, false }, // V
{ false, false, false, false, false, false, false, false, true }, // Z
};
private static final boolean[][] noConvertTable = {// to: B C D F I J S
// V Z from
{ true, true, false, false, true, false, true, false, false }, // B
{ false, true, false, false, true, false, false, false, false }, // C
{ false, false, true, false, false, false, false, false, false }, // D
{ false, false, false, true, false, false, false, false, false }, // F
{ false, false, false, false, true, false, false, false, false }, // I
{ false, false, false, false, false, true, false, false, false }, // J
{ false, false, false, false, true, false, true, false, false }, // S
{ false, false, false, false, false, false, false, true, false }, // V
{ false, false, false, false, false, false, false, false, true }, // Z
};
// ----
@Override
public final ResolvedMember[] getDeclaredFields() {
return ResolvedMember.NONE;
}
@Override
public final ResolvedMember[] getDeclaredMethods() {
return ResolvedMember.NONE;
}
@Override
public final ResolvedType[] getDeclaredInterfaces() {
return ResolvedType.NONE;
}
@Override
public final ResolvedMember[] getDeclaredPointcuts() {
return ResolvedMember.NONE;
}
@Override
public final ResolvedType getSuperclass() {
return null;
}
@Override
public ISourceContext getSourceContext() {
return null;
}
}
static class Missing extends ResolvedType {
Missing() {
super(MISSING_NAME, null);
}
// public final String toString() {
// return "<missing>";
// }
@Override
public final String getName() {
return MISSING_NAME;
}
@Override
public final boolean isMissing() {
return true;
}
public boolean hasAnnotation(UnresolvedType ofType) {
return false;
}
@Override
public final ResolvedMember[] getDeclaredFields() {
return ResolvedMember.NONE;
}
@Override
public final ResolvedMember[] getDeclaredMethods() {
return ResolvedMember.NONE;
}
@Override
public final ResolvedType[] getDeclaredInterfaces() {
return ResolvedType.NONE;
}
@Override
public final ResolvedMember[] getDeclaredPointcuts() {
return ResolvedMember.NONE;
}
@Override
public final ResolvedType getSuperclass() {
return null;
}
@Override
public final int getModifiers() {
return 0;
}
@Override
public final boolean isAssignableFrom(ResolvedType other) {
return false;
}
@Override
public final boolean isAssignableFrom(ResolvedType other, boolean allowMissing) {
return false;
}
@Override
public final boolean isCoerceableFrom(ResolvedType other) {
return false;
}
@Override
public boolean needsNoConversionFrom(ResolvedType other) {
return false;
}
@Override
public ISourceContext getSourceContext() {
return null;
}
}
/**
* Look up a member, takes into account any ITDs on this type. return null if not found
*/
public ResolvedMember lookupMemberNoSupers(Member member) {
ResolvedMember ret = lookupDirectlyDeclaredMemberNoSupers(member);
if (ret == null && interTypeMungers != null) {
for (ConcreteTypeMunger tm : interTypeMungers) {
if (matches(tm.getSignature(), member)) {
return tm.getSignature();
}
}
}
return ret;
}
public ResolvedMember lookupMemberWithSupersAndITDs(Member member) {
ResolvedMember ret = lookupMemberNoSupers(member);
if (ret != null) {
return ret;
}
ResolvedType supert = getSuperclass();
while (ret == null && supert != null) {
ret = supert.lookupMemberNoSupers(member);
if (ret == null) {
supert = supert.getSuperclass();
}
}
return ret;
}
/**
* as lookupMemberNoSupers, but does not include ITDs
*
* @param member
* @return
*/
public ResolvedMember lookupDirectlyDeclaredMemberNoSupers(Member member) {
ResolvedMember ret;
if (member.getKind() == Member.FIELD) {
ret = lookupMember(member, getDeclaredFields());
} else {
// assert member.getKind() == Member.METHOD || member.getKind() ==
// Member.CONSTRUCTOR
ret = lookupMember(member, getDeclaredMethods());
}
return ret;
}
/**
* This lookup has specialized behaviour - a null result tells the EclipseTypeMunger that it should make a default
* implementation of a method on this type.
*
* @param member
* @return
*/
public ResolvedMember lookupMemberIncludingITDsOnInterfaces(Member member) {
return lookupMemberIncludingITDsOnInterfaces(member, this);
}
private ResolvedMember lookupMemberIncludingITDsOnInterfaces(Member member, ResolvedType onType) {
ResolvedMember ret = onType.lookupMemberNoSupers(member);
if (ret != null) {
return ret;
} else {
ResolvedType superType = onType.getSuperclass();
if (superType != null) {
ret = lookupMemberIncludingITDsOnInterfaces(member, superType);
}
if (ret == null) {
// try interfaces then, but only ITDs now...
ResolvedType[] superInterfaces = onType.getDeclaredInterfaces();
for (int i = 0; i < superInterfaces.length; i++) {
ret = superInterfaces[i].lookupMethodInITDs(member);
if (ret != null) {
return ret;
}
}
}
}
return ret;
}
protected List<ConcreteTypeMunger> interTypeMungers = new ArrayList<ConcreteTypeMunger>();
public List<ConcreteTypeMunger> getInterTypeMungers() {
return interTypeMungers;
}
public List<ConcreteTypeMunger> getInterTypeParentMungers() {
List<ConcreteTypeMunger> l = new ArrayList<ConcreteTypeMunger>();
for (ConcreteTypeMunger element : interTypeMungers) {
if (element.getMunger() instanceof NewParentTypeMunger) {
l.add(element);
}
}
return l;
}
/**
* ??? This method is O(N*M) where N = number of methods and M is number of inter-type declarations in my super
*/
public List<ConcreteTypeMunger> getInterTypeMungersIncludingSupers() {
ArrayList<ConcreteTypeMunger> ret = new ArrayList<ConcreteTypeMunger>();
collectInterTypeMungers(ret);
return ret;
}
public List<ConcreteTypeMunger> getInterTypeParentMungersIncludingSupers() {
ArrayList<ConcreteTypeMunger> ret = new ArrayList<ConcreteTypeMunger>();
collectInterTypeParentMungers(ret);
return ret;
}
private void collectInterTypeParentMungers(List<ConcreteTypeMunger> collector) {
for (Iterator<ResolvedType> iter = getDirectSupertypes(); iter.hasNext();) {
ResolvedType superType = iter.next();
superType.collectInterTypeParentMungers(collector);
}
collector.addAll(getInterTypeParentMungers());
}
protected void collectInterTypeMungers(List<ConcreteTypeMunger> collector) {
for (Iterator<ResolvedType> iter = getDirectSupertypes(); iter.hasNext();) {
ResolvedType superType = iter.next();
if (superType == null) {
throw new BCException("UnexpectedProblem: a supertype in the hierarchy for " + this.getName() + " is null");
}
superType.collectInterTypeMungers(collector);
}
outer: for (Iterator<ConcreteTypeMunger> iter1 = collector.iterator(); iter1.hasNext();) {
ConcreteTypeMunger superMunger = iter1.next();
if (superMunger.getSignature() == null) {
continue;
}
if (!superMunger.getSignature().isAbstract()) {
continue;
}
for (ConcreteTypeMunger myMunger : getInterTypeMungers()) {
if (conflictingSignature(myMunger.getSignature(), superMunger.getSignature())) {
iter1.remove();
continue outer;
}
}
if (!superMunger.getSignature().isPublic()) {
continue;
}
for (Iterator<ResolvedMember> iter = getMethods(true, true); iter.hasNext();) {
ResolvedMember method = iter.next();
if (conflictingSignature(method, superMunger.getSignature())) {
iter1.remove();
continue outer;
}
}
}
collector.addAll(getInterTypeMungers());
}
/**
* Check: 1) That we don't have any abstract type mungers unless this type is abstract. 2) That an abstract ITDM on an interface
* is declared public. (Compiler limitation) (PR70794)
*/
public void checkInterTypeMungers() {
if (isAbstract()) {
return;
}
boolean itdProblem = false;
for (ConcreteTypeMunger munger : getInterTypeMungersIncludingSupers()) {
itdProblem = checkAbstractDeclaration(munger) || itdProblem; // Rule 2
}
if (itdProblem) {
return; // If the rules above are broken, return right now
}
for (ConcreteTypeMunger munger : getInterTypeMungersIncludingSupers()) {
if (munger.getSignature() != null && munger.getSignature().isAbstract() && munger.getMunger().getKind()!=ResolvedTypeMunger.PrivilegedAccess) { // Rule 1
if (munger.getMunger().getKind() == ResolvedTypeMunger.MethodDelegate2) {
// ignore for @AJ ITD as munger.getSignature() is the
// interface method hence abstract
} else {
world.getMessageHandler()
.handleMessage(
new Message("must implement abstract inter-type declaration: " + munger.getSignature(), "",
IMessage.ERROR, getSourceLocation(), null,
new ISourceLocation[] { getMungerLocation(munger) }));
}
}
}
}
/**
* See PR70794. This method checks that if an abstract inter-type method declaration is made on an interface then it must also
* be public. This is a compiler limitation that could be made to work in the future (if someone provides a worthwhile usecase)
*
* @return indicates if the munger failed the check
*/
private boolean checkAbstractDeclaration(ConcreteTypeMunger munger) {
if (munger.getMunger() != null && (munger.getMunger() instanceof NewMethodTypeMunger)) {
ResolvedMember itdMember = munger.getSignature();
ResolvedType onType = itdMember.getDeclaringType().resolve(world);
if (onType.isInterface() && itdMember.isAbstract() && !itdMember.isPublic()) {
world.getMessageHandler().handleMessage(
new Message(WeaverMessages.format(WeaverMessages.ITD_ABSTRACT_MUST_BE_PUBLIC_ON_INTERFACE,
munger.getSignature(), onType), "", Message.ERROR, getSourceLocation(), null,
new ISourceLocation[] { getMungerLocation(munger) }));
return true;
}
}
return false;
}
/**
* Get a source location for the munger. Until intertype mungers remember where they came from, the source location for the
* munger itself is null. In these cases use the source location for the aspect containing the ITD.
*/
private ISourceLocation getMungerLocation(ConcreteTypeMunger munger) {
ISourceLocation sloc = munger.getSourceLocation();
if (sloc == null) {
sloc = munger.getAspectType().getSourceLocation();
}
return sloc;
}
/**
* Returns a ResolvedType object representing the declaring type of this type, or null if this type does not represent a
* non-package-level-type.
* <p/>
* <strong>Warning</strong>: This is guaranteed to work for all member types. For anonymous/local types, the only guarantee is
* given in JLS 13.1, where it guarantees that if you call getDeclaringType() repeatedly, you will eventually get the top-level
* class, but it does not say anything about classes in between.
*
* @return the declaring type, or null if it is not an nested type.
*/
public ResolvedType getDeclaringType() {
if (isArray()) {
return null;
}
if (isNested() || isAnonymous()) {
return getOuterClass();
}
return null;
}
public static boolean isVisible(int modifiers, ResolvedType targetType, ResolvedType fromType) {
// System.err.println("mod: " + modifiers + ", " + targetType + " and "
// + fromType);
if (Modifier.isPublic(modifiers)) {
return true;
} else if (Modifier.isPrivate(modifiers)) {
return targetType.getOutermostType().equals(fromType.getOutermostType());
} else if (Modifier.isProtected(modifiers)) {
return samePackage(targetType, fromType) || targetType.isAssignableFrom(fromType);
} else { // package-visible
return samePackage(targetType, fromType);
}
}
private static boolean samePackage(ResolvedType targetType, ResolvedType fromType) {
String p1 = targetType.getPackageName();
String p2 = fromType.getPackageName();
if (p1 == null) {
return p2 == null;
}
if (p2 == null) {
return false;
}
return p1.equals(p2);
}
/**
* Checks if the generic type for 'this' and the generic type for 'other' are the same - it can be passed raw or parameterized
* versions and will just compare the underlying generic type.
*/
private boolean genericTypeEquals(ResolvedType other) {
ResolvedType rt = other;
if (rt.isParameterizedType() || rt.isRawType()) {
rt.getGenericType();
}
if (((isParameterizedType() || isRawType()) && getGenericType().equals(rt)) || (this.equals(other))) {
return true;
}
return false;
}
/**
* Look up the actual occurence of a particular type in the hierarchy for 'this' type. The input is going to be a generic type,
* and the caller wants to know if it was used in its RAW or a PARAMETERIZED form in this hierarchy.
*
* returns null if it can't be found.
*/
public ResolvedType discoverActualOccurrenceOfTypeInHierarchy(ResolvedType lookingFor) {
if (!lookingFor.isGenericType()) {
throw new BCException("assertion failed: method should only be called with generic type, but " + lookingFor + " is "
+ lookingFor.typeKind);
}
if (this.equals(ResolvedType.OBJECT)) {
return null;
}
if (genericTypeEquals(lookingFor)) {
return this;
}
ResolvedType superT = getSuperclass();
if (superT.genericTypeEquals(lookingFor)) {
return superT;
}
ResolvedType[] superIs = getDeclaredInterfaces();
for (int i = 0; i < superIs.length; i++) {
ResolvedType superI = superIs[i];
if (superI.genericTypeEquals(lookingFor)) {
return superI;
}
ResolvedType checkTheSuperI = superI.discoverActualOccurrenceOfTypeInHierarchy(lookingFor);
if (checkTheSuperI != null) {
return checkTheSuperI;
}
}
return superT.discoverActualOccurrenceOfTypeInHierarchy(lookingFor);
}
/**
* Called for all type mungers but only does something if they share type variables with a generic type which they target. When
* this happens this routine will check for the target type in the target hierarchy and 'bind' any type parameters as
* appropriate. For example, for the ITD "List<T> I<T>.x" against a type like this: "class A implements I<String>" this routine
* will return a parameterized form of the ITD "List<String> I.x"
*/
public ConcreteTypeMunger fillInAnyTypeParameters(ConcreteTypeMunger munger) {
boolean debug = false;
ResolvedMember member = munger.getSignature();
if (munger.isTargetTypeParameterized()) {
if (debug) {
System.err.println("Processing attempted parameterization of " + munger + " targetting type " + this);
}
if (debug) {
System.err.println(" This type is " + this + " (" + typeKind + ")");
}
// need to tailor this munger instance for the particular target...
if (debug) {
System.err.println(" Signature that needs parameterizing: " + member);
}
// Retrieve the generic type
ResolvedType onTypeResolved = world.resolve(member.getDeclaringType());
ResolvedType onType = onTypeResolved.getGenericType();
if (onType == null) {
// The target is not generic
getWorld().getMessageHandler().handleMessage(
MessageUtil.error("The target type for the intertype declaration is not generic",
munger.getSourceLocation()));
return munger;
}
member.resolve(world); // Ensure all parts of the member are resolved
if (debug) {
System.err.println(" Actual target ontype: " + onType + " (" + onType.typeKind + ")");
}
// quickly find the targettype in the type hierarchy for this type
// (it will be either RAW or PARAMETERIZED)
ResolvedType actualTarget = discoverActualOccurrenceOfTypeInHierarchy(onType);
if (actualTarget == null) {
throw new BCException("assertion failed: asked " + this + " for occurrence of " + onType + " in its hierarchy??");
}
// only bind the tvars if its a parameterized type or the raw type
// (in which case they collapse to bounds) - don't do it
// for generic types ;)
if (!actualTarget.isGenericType()) {
if (debug) {
System.err.println("Occurrence in " + this + " is actually " + actualTarget + " (" + actualTarget.typeKind
+ ")");
// parameterize the signature
// ResolvedMember newOne =
// member.parameterizedWith(actualTarget.getTypeParameters(),
// onType,actualTarget.isParameterizedType());
}
}
// if (!actualTarget.isRawType())
munger = munger.parameterizedFor(actualTarget);
if (debug) {
System.err.println("New sig: " + munger.getSignature());
}
if (debug) {
System.err.println("=====================================");
}
}
return munger;
}
/**
* Add an intertype munger to this type. isDuringCompilation tells us if we should be checking for an error scenario where two
* ITD fields are trying to use the same name. When this happens during compilation one of them is altered to get mangled name
* but when it happens during weaving it is too late and we need to put out an error asking them to recompile.
*/
public void addInterTypeMunger(ConcreteTypeMunger munger, boolean isDuringCompilation) {
ResolvedMember sig = munger.getSignature();
bits = (bits & ~MungersAnalyzed); // clear the bit - as the mungers have changed
if (sig == null || munger.getMunger() == null || munger.getMunger().getKind() == ResolvedTypeMunger.PrivilegedAccess) {
interTypeMungers.add(munger);
return;
}
// ConcreteTypeMunger originalMunger = munger;
// we will use the 'parameterized' ITD for all the comparisons but we
// say the original
// one passed in actually matched as it will be added to the intertype
// member finder
// for the target type. It is possible we only want to do this if a
// generic type
// is discovered and the tvar is collapsed to a bound?
munger = fillInAnyTypeParameters(munger);
sig = munger.getSignature(); // possibly changed when type parms filled in
if (sig.getKind() == Member.METHOD) {
// OPTIMIZE can this be sped up?
if (clashesWithExistingMember(munger, getMethods(true, false))) { // ITDs checked below
return;
}
if (this.isInterface()) {
// OPTIMIZE this set of methods are always the same - must we keep creating them as a list?
if (clashesWithExistingMember(munger, Arrays.asList(world.getCoreType(OBJECT).getDeclaredMethods()).iterator())) {
return;
}
}
} else if (sig.getKind() == Member.FIELD) {
if (clashesWithExistingMember(munger, Arrays.asList(getDeclaredFields()).iterator())) {
return;
}
// Cannot cope with two version '2' style mungers for the same field on the same type
// Must error and request the user recompile at least one aspect with the
// -Xset:itdStyle=1 option
if (!isDuringCompilation) {
ResolvedTypeMunger thisRealMunger = munger.getMunger();
if (thisRealMunger instanceof NewFieldTypeMunger) {
NewFieldTypeMunger newFieldTypeMunger = (NewFieldTypeMunger) thisRealMunger;
if (newFieldTypeMunger.version == NewFieldTypeMunger.VersionTwo) {
String thisRealMungerSignatureName = newFieldTypeMunger.getSignature().getName();
for (ConcreteTypeMunger typeMunger : interTypeMungers) {
if (typeMunger.getMunger() instanceof NewFieldTypeMunger) {
if (typeMunger.getSignature().getKind() == Member.FIELD) {
NewFieldTypeMunger existing = (NewFieldTypeMunger) typeMunger.getMunger();
if (existing.getSignature().getName().equals(thisRealMungerSignatureName)
&& existing.version == NewFieldTypeMunger.VersionTwo
// this check ensures no problem for a clash with an ITD on an interface
&& existing.getSignature().getDeclaringType()
.equals(newFieldTypeMunger.getSignature().getDeclaringType())) {
// report error on the aspect
StringBuffer sb = new StringBuffer();
sb.append("Cannot handle two aspects both attempting to use new style ITDs for the same named field ");
sb.append("on the same target type. Please recompile at least one aspect with '-Xset:itdVersion=1'.");
sb.append(" Aspects involved: " + munger.getAspectType().getName() + " and "
+ typeMunger.getAspectType().getName() + ".");
sb.append(" Field is named '" + existing.getSignature().getName() + "'");
getWorld().getMessageHandler().handleMessage(
new Message(sb.toString(), getSourceLocation(), true));
return;
}
}
}
}
}
}
}
} else {
if (clashesWithExistingMember(munger, Arrays.asList(getDeclaredMethods()).iterator())) {
return;
}
}
boolean needsAdding =true;
boolean needsToBeAddedEarlier =false;
// now compare to existingMungers
for (Iterator<ConcreteTypeMunger> i = interTypeMungers.iterator(); i.hasNext();) {
ConcreteTypeMunger existingMunger = i.next();
boolean v2itds = munger.getSignature().getKind()== Member.FIELD && (munger.getMunger() instanceof NewFieldTypeMunger) && ((NewFieldTypeMunger)munger.getMunger()).version==NewFieldTypeMunger.VersionTwo;
if (conflictingSignature(existingMunger.getSignature(), munger.getSignature(),v2itds)) {
// System.err.println("match " + munger + " with " + existingMunger);
if (isVisible(munger.getSignature().getModifiers(), munger.getAspectType(), existingMunger.getAspectType())) {
// System.err.println(" is visible");
int c = compareMemberPrecedence(sig, existingMunger.getSignature());
if (c == 0) {
c = getWorld().compareByPrecedenceAndHierarchy(munger.getAspectType(), existingMunger.getAspectType());
}
// System.err.println(" compare: " + c);
if (c < 0) {
// the existing munger dominates the new munger
checkLegalOverride(munger.getSignature(), existingMunger.getSignature(), 0x11, null);
needsAdding = false;
if (munger.getSignature().getKind()== Member.FIELD && munger.getSignature().getDeclaringType().resolve(world).isInterface() && ((NewFieldTypeMunger)munger.getMunger()).version==NewFieldTypeMunger.VersionTwo) {
// still need to add it
needsAdding=true;
}
break;
} else if (c > 0) {
// the new munger dominates the existing one
checkLegalOverride(existingMunger.getSignature(), munger.getSignature(), 0x11, null);
// i.remove();
if (existingMunger.getSignature().getKind()==Member.FIELD &&
existingMunger.getSignature().getDeclaringType().resolve(world).isInterface()
&& ((NewFieldTypeMunger)existingMunger.getMunger()).version==NewFieldTypeMunger.VersionTwo) {
needsToBeAddedEarlier=true;
} else {
i.remove();
}
break;
} else {
interTypeConflictError(munger, existingMunger);
interTypeConflictError(existingMunger, munger);
return;
}
}
}
}
// System.err.println("adding: " + munger + " to " + this);
// we are adding the parameterized form of the ITD to the list of
// mungers. Within it, the munger knows the original declared
// signature for the ITD so it can be retrieved.
if (needsAdding) {
if (!needsToBeAddedEarlier) {
interTypeMungers.add(munger);
} else {
interTypeMungers.add(0,munger);
}
}
}
/**
* Compare the type transformer with the existing members. A clash may not be an error (the ITD may be the 'default
* implementation') so returning false is not always a sign of an error.
*
* @return true if there is a clash
*/
private boolean clashesWithExistingMember(ConcreteTypeMunger typeTransformer, Iterator<ResolvedMember> existingMembers) {
ResolvedMember typeTransformerSignature = typeTransformer.getSignature();
// ResolvedType declaringAspectType = munger.getAspectType();
// if (declaringAspectType.isRawType()) declaringAspectType =
// declaringAspectType.getGenericType();
// if (declaringAspectType.isGenericType()) {
//
// ResolvedType genericOnType =
// getWorld().resolve(sig.getDeclaringType()).getGenericType();
// ConcreteTypeMunger ctm =
// munger.parameterizedFor(discoverActualOccurrenceOfTypeInHierarchy
// (genericOnType));
// sig = ctm.getSignature(); // possible sig change when type
// }
// if (munger.getMunger().hasTypeVariableAliases()) {
// ResolvedType genericOnType =
// getWorld().resolve(sig.getDeclaringType()).getGenericType();
// ConcreteTypeMunger ctm =
// munger.parameterizedFor(discoverActualOccurrenceOfTypeInHierarchy(
// genericOnType));
// sig = ctm.getSignature(); // possible sig change when type parameters
// filled in
// }
ResolvedTypeMunger rtm = typeTransformer.getMunger();
boolean v2itds = true;
if (rtm instanceof NewFieldTypeMunger && ((NewFieldTypeMunger)rtm).version==NewFieldTypeMunger.VersionOne) {
v2itds = false;
}
while (existingMembers.hasNext()) {
ResolvedMember existingMember = existingMembers.next();
// don't worry about clashing with bridge methods
if (existingMember.isBridgeMethod()) {
continue;
}
if (conflictingSignature(existingMember, typeTransformerSignature,v2itds)) {
// System.err.println("conflict: existingMember=" +
// existingMember + " typeMunger=" + munger);
// System.err.println(munger.getSourceLocation() + ", " +
// munger.getSignature() + ", " +
// munger.getSignature().getSourceLocation());
if (isVisible(existingMember.getModifiers(), this, typeTransformer.getAspectType())) {
int c = compareMemberPrecedence(typeTransformerSignature, existingMember);
// System.err.println(" c: " + c);
if (c < 0) {
ResolvedType typeTransformerTargetType = typeTransformerSignature.getDeclaringType().resolve(world);
if (typeTransformerTargetType.isInterface()) {
ResolvedType existingMemberType = existingMember.getDeclaringType().resolve(world);
if ((rtm instanceof NewMethodTypeMunger) && !typeTransformerTargetType.equals(existingMemberType)) {
// Might be pr404601. ITD is on an interface with a different visibility to the real member
if (Modifier.isPrivate(typeTransformerSignature.getModifiers()) &&
Modifier.isPublic(existingMember.getModifiers())) {
world.getMessageHandler().handleMessage(new Message("private intertype declaration '"+typeTransformerSignature.toString()+"' clashes with public member '"+existingMember.toString()+"'",existingMember.getSourceLocation(),true));
}
}
}
// existingMember dominates munger
checkLegalOverride(typeTransformerSignature, existingMember, 0x10, typeTransformer.getAspectType());
return true;
} else if (c > 0) {
// munger dominates existingMember
checkLegalOverride(existingMember, typeTransformerSignature, 0x01, typeTransformer.getAspectType());
// interTypeMungers.add(munger);
// ??? might need list of these overridden abstracts
continue;
} else {
// bridge methods can differ solely in return type.
// FIXME this whole method seems very hokey - unaware of covariance/varargs/bridging - it
// could do with a rewrite !
boolean sameReturnTypes = (existingMember.getReturnType().equals(typeTransformerSignature.getReturnType()));
if (sameReturnTypes) {
// pr206732 - if the existingMember is due to a
// previous application of this same ITD (which can
// happen if this is a binary type being brought in
// from the aspectpath). The 'better' fix is
// to recognize it is from the aspectpath at a
// higher level and dont do this, but that is rather
// more work.
boolean isDuplicateOfPreviousITD = false;
ResolvedType declaringRt = existingMember.getDeclaringType().resolve(world);
WeaverStateInfo wsi = declaringRt.getWeaverState();
if (wsi != null) {
List<ConcreteTypeMunger> mungersAffectingThisType = wsi.getTypeMungers(declaringRt);
if (mungersAffectingThisType != null) {
for (Iterator<ConcreteTypeMunger> iterator = mungersAffectingThisType.iterator(); iterator
.hasNext() && !isDuplicateOfPreviousITD;) {
ConcreteTypeMunger ctMunger = iterator.next();
// relatively crude check - is the ITD
// for the same as the existingmember
// and does it come
// from the same aspect
if (ctMunger.getSignature().equals(existingMember)
&& ctMunger.aspectType.equals(typeTransformer.getAspectType())) {
isDuplicateOfPreviousITD = true;
}
}
}
}
if (!isDuplicateOfPreviousITD) {
// b275032 - this is OK if it is the default ctor and that default ctor was generated
// at compile time, otherwise we cannot overwrite it
if (!(typeTransformerSignature.getName().equals("<init>") && existingMember.isDefaultConstructor())) {
String aspectName = typeTransformer.getAspectType().getName();
ISourceLocation typeTransformerLocation = typeTransformer.getSourceLocation();
ISourceLocation existingMemberLocation = existingMember.getSourceLocation();
String msg = WeaverMessages.format(WeaverMessages.ITD_MEMBER_CONFLICT, aspectName,
existingMember);
// this isn't quite right really... as I think the errors should only be recorded against
// what is currently being processed or they may get lost or reported twice
// report error on the aspect
getWorld().getMessageHandler().handleMessage(new Message(msg, typeTransformerLocation, true));
// report error on the affected type, if we can
if (existingMemberLocation != null) {
getWorld().getMessageHandler()
.handleMessage(new Message(msg, existingMemberLocation, true));
}
return true; // clash - so ignore this itd
}
}
}
}
} else if (isDuplicateMemberWithinTargetType(existingMember, this, typeTransformerSignature)) {
getWorld().getMessageHandler().handleMessage(
MessageUtil.error(WeaverMessages.format(WeaverMessages.ITD_MEMBER_CONFLICT, typeTransformer
.getAspectType().getName(), existingMember), typeTransformer.getSourceLocation()));
return true;
}
}
}
return false;
}
// we know that the member signature matches, but that the member in the
// target type is not visible to the aspect.
// this may still be disallowed if it would result in two members within the
// same declaring type with the same
// signature AND more than one of them is concrete AND they are both visible
// within the target type.
private boolean isDuplicateMemberWithinTargetType(ResolvedMember existingMember, ResolvedType targetType,
ResolvedMember itdMember) {
if ((existingMember.isAbstract() || itdMember.isAbstract())) {
return false;
}
UnresolvedType declaringType = existingMember.getDeclaringType();
if (!targetType.equals(declaringType)) {
return false;
}
// now have to test that itdMember is visible from targetType
if (Modifier.isPrivate(itdMember.getModifiers())) {
return false;
}
if (itdMember.isPublic()) {
return true;
}
// must be in same package to be visible then...
if (!targetType.getPackageName().equals(itdMember.getDeclaringType().getPackageName())) {
return false;
}
// trying to put two members with the same signature into the exact same
// type..., and both visible in that type.
return true;
}
/**
* @param transformerPosition which parameter is the type transformer (0x10 for first, 0x01 for second, 0x11 for both, 0x00 for
* neither)
* @param aspectType the declaring type of aspect defining the *first* type transformer
* @return true if the override is legal note: calling showMessage with two locations issues TWO messages, not ONE message with
* an additional source location.
*/
public boolean checkLegalOverride(ResolvedMember parent, ResolvedMember child, int transformerPosition, ResolvedType aspectType) {
// System.err.println("check: " + child.getDeclaringType() + " overrides " + parent.getDeclaringType());
if (Modifier.isFinal(parent.getModifiers())) {
// If the ITD matching is occurring due to pulling in a BinaryTypeBinding then this check can incorrectly
// signal an error because the ITD transformer being examined here will exactly match the member it added
// during the first round of compilation. This situation can only occur if the ITD is on an interface whilst
// the class is the top most implementor. If the ITD is on the same type that received it during compilation,
// this method won't be called as the previous check for precedence level will return 0.
if (transformerPosition == 0x10 && aspectType != null) {
ResolvedType nonItdDeclaringType = child.getDeclaringType().resolve(world);
WeaverStateInfo wsi = nonItdDeclaringType.getWeaverState();
if (wsi != null) {
List<ConcreteTypeMunger> transformersOnThisType = wsi.getTypeMungers(nonItdDeclaringType);
if (transformersOnThisType != null) {
for (ConcreteTypeMunger transformer : transformersOnThisType) {
// relatively crude check - is the ITD for the same as the existingmember
// and does it come from the same aspect
if (transformer.aspectType.equals(aspectType)) {
if (parent.equalsApartFromDeclaringType(transformer.getSignature())) {
return true;
}
}
}
}
}
}
world.showMessage(Message.ERROR, WeaverMessages.format(WeaverMessages.CANT_OVERRIDE_FINAL_MEMBER, parent),
child.getSourceLocation(), null);
return false;
}
boolean incompatibleReturnTypes = false;
// In 1.5 mode, allow for covariance on return type
if (world.isInJava5Mode() && parent.getKind() == Member.METHOD) {
// Look at the generic types when doing this comparison
ResolvedType rtParentReturnType = parent.resolve(world).getGenericReturnType().resolve(world);
ResolvedType rtChildReturnType = child.resolve(world).getGenericReturnType().resolve(world);
incompatibleReturnTypes = !rtParentReturnType.isAssignableFrom(rtChildReturnType);
// For debug, uncomment this bit and we'll repeat the check - stick
// a breakpoint on the call
// if (incompatibleReturnTypes) {
// incompatibleReturnTypes =
// !rtParentReturnType.isAssignableFrom(rtChildReturnType);
// }
} else {
ResolvedType rtParentReturnType = parent.resolve(world).getGenericReturnType().resolve(world);
ResolvedType rtChildReturnType = child.resolve(world).getGenericReturnType().resolve(world);
incompatibleReturnTypes = !rtParentReturnType.equals(rtChildReturnType);
}
if (incompatibleReturnTypes) {
world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_RETURN_TYPE_MISMATCH, parent, child),
child.getSourceLocation(), parent.getSourceLocation());
return false;
}
if (parent.getKind() == Member.POINTCUT) {
UnresolvedType[] pTypes = parent.getParameterTypes();
UnresolvedType[] cTypes = child.getParameterTypes();
if (!Arrays.equals(pTypes, cTypes)) {
world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_PARAM_TYPE_MISMATCH, parent, child),
child.getSourceLocation(), parent.getSourceLocation());
return false;
}
}
// System.err.println("check: " + child.getModifiers() +
// " more visible " + parent.getModifiers());
if (isMoreVisible(parent.getModifiers(), child.getModifiers())) {
world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_VISIBILITY_REDUCTION, parent, child),
child.getSourceLocation(), parent.getSourceLocation());
return false;
}
// check declared exceptions
ResolvedType[] childExceptions = world.resolve(child.getExceptions());
ResolvedType[] parentExceptions = world.resolve(parent.getExceptions());
ResolvedType runtimeException = world.resolve("java.lang.RuntimeException");
ResolvedType error = world.resolve("java.lang.Error");
outer: for (int i = 0, leni = childExceptions.length; i < leni; i++) {
// System.err.println("checking: " + childExceptions[i]);
if (runtimeException.isAssignableFrom(childExceptions[i])) {
continue;
}
if (error.isAssignableFrom(childExceptions[i])) {
continue;
}
for (int j = 0, lenj = parentExceptions.length; j < lenj; j++) {
if (parentExceptions[j].isAssignableFrom(childExceptions[i])) {
continue outer;
}
}
// this message is now better handled my MethodVerifier in JDT core.
// world.showMessage(IMessage.ERROR,
// WeaverMessages.format(WeaverMessages.ITD_DOESNT_THROW,
// childExceptions[i].getName()),
// child.getSourceLocation(), null);
return false;
}
boolean parentStatic = Modifier.isStatic(parent.getModifiers());
boolean childStatic = Modifier.isStatic(child.getModifiers());
if (parentStatic && !childStatic) {
world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_OVERRIDDEN_STATIC, child, parent),
child.getSourceLocation(), null);
return false;
} else if (childStatic && !parentStatic) {
world.showMessage(IMessage.ERROR, WeaverMessages.format(WeaverMessages.ITD_OVERIDDING_STATIC, child, parent),
child.getSourceLocation(), null);
return false;
}
return true;
}
private int compareMemberPrecedence(ResolvedMember m1, ResolvedMember m2) {
// if (!m1.getReturnType().equals(m2.getReturnType())) return 0;
// need to allow for the special case of 'clone' - which is like
// abstract but is
// not marked abstract. The code below this next line seems to make
// assumptions
// about what will have gotten through the compiler based on the normal
// java rules. clone goes against these...
if (Modifier.isProtected(m2.getModifiers()) && m2.getName().charAt(0) == 'c') {
UnresolvedType declaring = m2.getDeclaringType();
if (declaring != null) {
if (declaring.getName().equals("java.lang.Object") && m2.getName().equals("clone")) {
return +1;
}
}
}
if (Modifier.isAbstract(m1.getModifiers())) {
return -1;
}
if (Modifier.isAbstract(m2.getModifiers())) {
return +1;
}
if (m1.getDeclaringType().equals(m2.getDeclaringType())) {
return 0;
}
ResolvedType t1 = m1.getDeclaringType().resolve(world);
ResolvedType t2 = m2.getDeclaringType().resolve(world);
if (t1.isAssignableFrom(t2)) {
return -1;
}
if (t2.isAssignableFrom(t1)) {
return +1;
}
return 0;
}
public static boolean isMoreVisible(int m1, int m2) {
if (Modifier.isPrivate(m1)) {
return false;
}
if (isPackage(m1)) {
return Modifier.isPrivate(m2);
}
if (Modifier.isProtected(m1)) {
return /* private package */(Modifier.isPrivate(m2) || isPackage(m2));
}
if (Modifier.isPublic(m1)) {
return /* private package protected */!Modifier.isPublic(m2);
}
throw new RuntimeException("bad modifier: " + m1);
}
private static boolean isPackage(int i) {
return (0 == (i & (Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED)));
}
private void interTypeConflictError(ConcreteTypeMunger m1, ConcreteTypeMunger m2) {
// XXX this works only if we ignore separate compilation issues
// XXX dual errors possible if (this instanceof BcelObjectType) return;
/*
* if (m1.getMunger().getKind() == ResolvedTypeMunger.Field && m2.getMunger().getKind() == ResolvedTypeMunger.Field) { // if
* *exactly* the same, it's ok return true; }
*/
// System.err.println("conflict at " + m2.getSourceLocation());
getWorld().showMessage(
IMessage.ERROR,
WeaverMessages.format(WeaverMessages.ITD_CONFLICT, m1.getAspectType().getName(), m2.getSignature(), m2
.getAspectType().getName()), m2.getSourceLocation(), getSourceLocation());
// return false;
}
public ResolvedMember lookupSyntheticMember(Member member) {
// ??? horribly inefficient
// for (Iterator i =
// System.err.println("lookup " + member + " in " + interTypeMungers);
for (ConcreteTypeMunger m : interTypeMungers) {
ResolvedMember ret = m.getMatchingSyntheticMember(member);
if (ret != null) {
// System.err.println(" found: " + ret);
return ret;
}
}
// Handling members for the new array join point
if (world.isJoinpointArrayConstructionEnabled() && this.isArray()) {
if (member.getKind() == Member.CONSTRUCTOR) {
ResolvedMemberImpl ret = new ResolvedMemberImpl(Member.CONSTRUCTOR, this, Modifier.PUBLIC, UnresolvedType.VOID,
"<init>", world.resolve(member.getParameterTypes()));
// Give the parameters names - they are going to be the dimensions uses to build the array (dim0 > dimN)
int count = ret.getParameterTypes().length;
String[] paramNames = new String[count];
for (int i = 0; i < count; i++) {
paramNames[i] = new StringBuffer("dim").append(i).toString();
}
ret.setParameterNames(paramNames);
return ret;
}
}
// if (this.getSuperclass() != ResolvedType.OBJECT &&
// this.getSuperclass() != null) {
// return getSuperclass().lookupSyntheticMember(member);
// }
return null;
}
static class SuperClassWalker implements Iterator<ResolvedType> {
private ResolvedType curr;
private SuperInterfaceWalker iwalker;
private boolean wantGenerics;
public SuperClassWalker(ResolvedType type, SuperInterfaceWalker iwalker, boolean genericsAware) {
this.curr = type;
this.iwalker = iwalker;
this.wantGenerics = genericsAware;
}
public boolean hasNext() {
return curr != null;
}
public ResolvedType next() {
ResolvedType ret = curr;
if (!wantGenerics && ret.isParameterizedOrGenericType()) {
ret = ret.getRawType();
}
iwalker.push(ret); // tell the interface walker about another class whose interfaces need visiting
curr = curr.getSuperclass();
return ret;
}
public void remove() {
throw new UnsupportedOperationException();
}
}
static class SuperInterfaceWalker implements Iterator<ResolvedType> {
private Getter<ResolvedType, ResolvedType> ifaceGetter;
Iterator<ResolvedType> delegate = null;
public Queue<ResolvedType> toPersue = new LinkedList<ResolvedType>();
public Set<ResolvedType> visited = new HashSet<ResolvedType>();
SuperInterfaceWalker(Iterators.Getter<ResolvedType, ResolvedType> ifaceGetter) {
this.ifaceGetter = ifaceGetter;
}
SuperInterfaceWalker(Iterators.Getter<ResolvedType, ResolvedType> ifaceGetter, ResolvedType interfaceType) {
this.ifaceGetter = ifaceGetter;
this.delegate = Iterators.one(interfaceType);
}
public boolean hasNext() {
if (delegate == null || !delegate.hasNext()) {
// either we set it up or we have run out, is there anything else to look at?
if (toPersue.isEmpty()) {
return false;
}
do {
ResolvedType next = toPersue.remove();
visited.add(next);
delegate = ifaceGetter.get(next); // retrieve interfaces from a class or another interface
} while (!delegate.hasNext() && !toPersue.isEmpty());
}
return delegate.hasNext();
}
public void push(ResolvedType ret) {
toPersue.add(ret);
}
public ResolvedType next() {
ResolvedType next = delegate.next();
// BUG should check for generics and erase?
// if (!visited.contains(next)) {
// visited.add(next);
if (visited.add(next)) {
toPersue.add(next); // pushes on interfaces already visited?
}
return next;
}
public void remove() {
throw new UnsupportedOperationException();
}
}
public void clearInterTypeMungers() {
if (isRawType()) {
ResolvedType genericType = getGenericType();
if (genericType.isRawType()) { // ERROR SITUATION: PR341926
// For some reason the raw type is pointing to another raw form (possibly itself)
System.err.println("DebugFor341926: Type " + this.getName() + " has an incorrect generic form");
} else {
genericType.clearInterTypeMungers();
}
}
// interTypeMungers.clear();
// BUG? Why can't this be clear() instead: 293620 c6
interTypeMungers = new ArrayList<ConcreteTypeMunger>();
}
public boolean isTopmostImplementor(ResolvedType interfaceType) {
boolean b = true;
if (isInterface()) {
b = false;
} else if (!interfaceType.isAssignableFrom(this, true)) {
b = false;
} else {
ResolvedType superclass = this.getSuperclass();
if (superclass.isMissing()) {
b = true; // we don't know anything about supertype, and it can't be exposed to weaver
} else if (interfaceType.isAssignableFrom(superclass, true)) { // check that I'm truly the topmost implementor
b = false;
}
}
// System.out.println("is " + getName() + " topmostimplementor of " + interfaceType + "? " + b);
return b;
}
public ResolvedType getTopmostImplementor(ResolvedType interfaceType) {
if (isInterface()) {
return null;
}
if (!interfaceType.isAssignableFrom(this)) {
return null;
}
// Check if my super class is an implementor?
ResolvedType higherType = this.getSuperclass().getTopmostImplementor(interfaceType);
if (higherType != null) {
return higherType;
}
return this;
}
public List<ResolvedMember> getExposedPointcuts() {
List<ResolvedMember> ret = new ArrayList<ResolvedMember>();
if (getSuperclass() != null) {
ret.addAll(getSuperclass().getExposedPointcuts());
}
for (ResolvedType type : getDeclaredInterfaces()) {
addPointcutsResolvingConflicts(ret, Arrays.asList(type.getDeclaredPointcuts()), false);
}
addPointcutsResolvingConflicts(ret, Arrays.asList(getDeclaredPointcuts()), true);
for (ResolvedMember member : ret) {
ResolvedPointcutDefinition inherited = (ResolvedPointcutDefinition) member;
if (inherited != null && inherited.isAbstract()) {
if (!this.isAbstract()) {
getWorld().showMessage(IMessage.ERROR,
WeaverMessages.format(WeaverMessages.POINCUT_NOT_CONCRETE, inherited, this.getName()),
inherited.getSourceLocation(), this.getSourceLocation());
}
}
}
return ret;
}
private void addPointcutsResolvingConflicts(List<ResolvedMember> acc, List<ResolvedMember> added, boolean isOverriding) {
for (Iterator<ResolvedMember> i = added.iterator(); i.hasNext();) {
ResolvedPointcutDefinition toAdd = (ResolvedPointcutDefinition) i.next();
for (Iterator<ResolvedMember> j = acc.iterator(); j.hasNext();) {
ResolvedPointcutDefinition existing = (ResolvedPointcutDefinition) j.next();
if (toAdd == null || existing == null || existing == toAdd) {
continue;
}
UnresolvedType pointcutDeclaringTypeUT = existing.getDeclaringType();
if (pointcutDeclaringTypeUT != null) {
ResolvedType pointcutDeclaringType = pointcutDeclaringTypeUT.resolve(getWorld());
if (!isVisible(existing.getModifiers(), pointcutDeclaringType, this)) {
// if they intended to override it but it is not visible,
// give them a nicer message
if (existing.isAbstract() && conflictingSignature(existing, toAdd)) {
getWorld().showMessage(
IMessage.ERROR,
WeaverMessages.format(WeaverMessages.POINTCUT_NOT_VISIBLE, existing.getDeclaringType()
.getName() + "." + existing.getName() + "()", this.getName()),
toAdd.getSourceLocation(), null);
j.remove();
}
continue;
}
}
if (conflictingSignature(existing, toAdd)) {
if (isOverriding) {
checkLegalOverride(existing, toAdd, 0x00, null);
j.remove();
} else {
getWorld().showMessage(
IMessage.ERROR,
WeaverMessages.format(WeaverMessages.CONFLICTING_INHERITED_POINTCUTS,
this.getName() + toAdd.getSignature()), existing.getSourceLocation(),
toAdd.getSourceLocation());
j.remove();
}
}
}
acc.add(toAdd);
}
}
public ISourceLocation getSourceLocation() {
return null;
}
public boolean isExposedToWeaver() {
return false;
}
public WeaverStateInfo getWeaverState() {
return null;
}
/**
* Overridden by ReferenceType to return a sensible answer for parameterized and raw types.
*
* @return
*/
public ReferenceType getGenericType() {
// if (!(isParameterizedType() || isRawType()))
// throw new BCException("The type " + getBaseName() + " is not parameterized or raw - it has no generic type");
return null;
}
@Override
public ResolvedType getRawType() {
return super.getRawType().resolve(world);
}
public ResolvedType parameterizedWith(UnresolvedType[] typeParameters) {
if (!(isGenericType() || isParameterizedType())) {
return this;
}
return TypeFactory.createParameterizedType(this.getGenericType(), typeParameters, getWorld());
}
/**
* Iff I am a parameterized type, and any of my parameters are type variable references (or nested parameterized types),
* return a version with those type parameters replaced in accordance with the passed bindings.
*/
@Override
public UnresolvedType parameterize(Map<String, UnresolvedType> typeBindings) {
if (!isParameterizedType()) {
// throw new IllegalStateException("Can't parameterize a type that is not a parameterized type");
return this;
}
boolean workToDo = false;
for (int i = 0; i < typeParameters.length; i++) {
if (typeParameters[i].isTypeVariableReference() || (typeParameters[i] instanceof BoundedReferenceType) || typeParameters[i].isParameterizedType()) {
workToDo = true;
}
}
if (!workToDo) {
return this;
} else {
UnresolvedType[] newTypeParams = new UnresolvedType[typeParameters.length];
for (int i = 0; i < newTypeParams.length; i++) {
newTypeParams[i] = typeParameters[i];
if (newTypeParams[i].isTypeVariableReference()) {
TypeVariableReferenceType tvrt = (TypeVariableReferenceType) newTypeParams[i];
UnresolvedType binding = typeBindings.get(tvrt.getTypeVariable().getName());
if (binding != null) {
newTypeParams[i] = binding;
}
} else if (newTypeParams[i] instanceof BoundedReferenceType) {
BoundedReferenceType brType = (BoundedReferenceType) newTypeParams[i];
newTypeParams[i] = brType.parameterize(typeBindings);
// brType.parameterize(typeBindings)
} else if (newTypeParams[i].isParameterizedType()) {
newTypeParams[i] = newTypeParams[i].parameterize(typeBindings);
}
}
return TypeFactory.createParameterizedType(getGenericType(), newTypeParams, getWorld());
}
}
// public boolean hasParameterizedSuperType() {
// getParameterizedSuperTypes();
// return parameterizedSuperTypes.length > 0;
// }
// public boolean hasGenericSuperType() {
// ResolvedType[] superTypes = getDeclaredInterfaces();
// for (int i = 0; i < superTypes.length; i++) {
// if (superTypes[i].isGenericType())
// return true;
// }
// return false;
// }
// private ResolvedType[] parameterizedSuperTypes = null;
/**
* Similar to the above method, but accumulates the super types
*
* @return
*/
// public ResolvedType[] getParameterizedSuperTypes() {
// if (parameterizedSuperTypes != null)
// return parameterizedSuperTypes;
// List accumulatedTypes = new ArrayList();
// accumulateParameterizedSuperTypes(this, accumulatedTypes);
// ResolvedType[] ret = new ResolvedType[accumulatedTypes.size()];
// parameterizedSuperTypes = (ResolvedType[]) accumulatedTypes.toArray(ret);
// return parameterizedSuperTypes;
// }
// private void accumulateParameterizedSuperTypes(ResolvedType forType, List
// parameterizedTypeList) {
// if (forType.isParameterizedType()) {
// parameterizedTypeList.add(forType);
// }
// if (forType.getSuperclass() != null) {
// accumulateParameterizedSuperTypes(forType.getSuperclass(),
// parameterizedTypeList);
// }
// ResolvedType[] interfaces = forType.getDeclaredInterfaces();
// for (int i = 0; i < interfaces.length; i++) {
// accumulateParameterizedSuperTypes(interfaces[i], parameterizedTypeList);
// }
// }
/**
* @return true if assignable to java.lang.Exception
*/
public boolean isException() {
return (world.getCoreType(UnresolvedType.JL_EXCEPTION).isAssignableFrom(this));
}
/**
* @return true if it is an exception and it is a checked one, false otherwise.
*/
public boolean isCheckedException() {
if (!isException()) {
return false;
}
if (world.getCoreType(UnresolvedType.RUNTIME_EXCEPTION).isAssignableFrom(this)) {
return false;
}
return true;
}
/**
* Determines if variables of this type could be assigned values of another with lots of help. java.lang.Object is convertable
* from all types. A primitive type is convertable from X iff it's assignable from X. A reference type is convertable from X iff
* it's coerceable from X. In other words, X isConvertableFrom Y iff the compiler thinks that _some_ value of Y could be
* assignable to a variable of type X without loss of precision.
*
* @param other the other type
* @param world the {@link World} in which the possible assignment should be checked.
* @return true iff variables of this type could be assigned values of other with possible conversion
*/
public final boolean isConvertableFrom(ResolvedType other) {
// // version from TypeX
// if (this.equals(OBJECT)) return true;
// if (this.isPrimitiveType() || other.isPrimitiveType()) return
// this.isAssignableFrom(other);
// return this.isCoerceableFrom(other);
//
// version from ResolvedTypeX
if (this.equals(OBJECT)) {
return true;
}
if (world.isInJava5Mode()) {
if (this.isPrimitiveType() ^ other.isPrimitiveType()) { // If one is
// primitive
// and the
// other
// isnt
if (validBoxing.contains(this.getSignature() + other.getSignature())) {
return true;
}
}
}
if (this.isPrimitiveType() || other.isPrimitiveType()) {
return this.isAssignableFrom(other);
}
return this.isCoerceableFrom(other);
}
/**
* Determines if the variables of this type could be assigned values of another type without casting. This still allows for
* assignment conversion as per JLS 2ed 5.2. For object types, this means supertypeOrEqual(THIS, OTHER).
*
* @param other the other type
* @param world the {@link World} in which the possible assignment should be checked.
* @return true iff variables of this type could be assigned values of other without casting
* @throws NullPointerException if other is null
*/
public abstract boolean isAssignableFrom(ResolvedType other);
public abstract boolean isAssignableFrom(ResolvedType other, boolean allowMissing);
/**
* Determines if values of another type could possibly be cast to this type. The rules followed are from JLS 2ed 5.5,
* "Casting Conversion".
* <p/>
* <p>
* This method should be commutative, i.e., for all UnresolvedType a, b and all World w:
* <p/>
* <blockquote>
*
* <pre>
* a.isCoerceableFrom(b, w) == b.isCoerceableFrom(a, w)
* </pre>
*
* </blockquote>
*
* @param other the other type
* @param world the {@link World} in which the possible coersion should be checked.
* @return true iff values of other could possibly be cast to this type.
* @throws NullPointerException if other is null.
*/
public abstract boolean isCoerceableFrom(ResolvedType other);
public boolean needsNoConversionFrom(ResolvedType o) {
return isAssignableFrom(o);
}
public String getSignatureForAttribute() {
return signature; // Assume if this is being called that it is for a
// simple type (eg. void, int, etc)
}
private FuzzyBoolean parameterizedWithTypeVariable = FuzzyBoolean.MAYBE;
/**
* return true if the parameterization of this type includes a member type variable. Member type variables occur in generic
* methods/ctors.
*/
public boolean isParameterizedWithTypeVariable() {
// MAYBE means we haven't worked it out yet...
if (parameterizedWithTypeVariable == FuzzyBoolean.MAYBE) {
// if there are no type parameters then we cant be...
if (typeParameters == null || typeParameters.length == 0) {
parameterizedWithTypeVariable = FuzzyBoolean.NO;
return false;
}
for (int i = 0; i < typeParameters.length; i++) {
ResolvedType aType = (ResolvedType) typeParameters[i];
if (aType.isTypeVariableReference()
// Changed according to the problems covered in bug 222648
// Don't care what kind of type variable - the fact that there
// is one
// at all means we can't risk caching it against we get confused
// later
// by another variation of the parameterization that just
// happens to
// use the same type variable name
// assume the worst - if its definetly not a type declared one,
// it could be anything
// && ((TypeVariableReference)aType).getTypeVariable().
// getDeclaringElementKind()!=TypeVariable.TYPE
) {
parameterizedWithTypeVariable = FuzzyBoolean.YES;
return true;
}
if (aType.isParameterizedType()) {
boolean b = aType.isParameterizedWithTypeVariable();
if (b) {
parameterizedWithTypeVariable = FuzzyBoolean.YES;
return true;
}
}
if (aType.isGenericWildcard()) {
BoundedReferenceType boundedRT = (BoundedReferenceType) aType;
if (boundedRT.isExtends()) {
boolean b = false;
UnresolvedType upperBound = boundedRT.getUpperBound();
if (upperBound.isParameterizedType()) {
b = ((ResolvedType) upperBound).isParameterizedWithTypeVariable();
} else if (upperBound.isTypeVariableReference()
&& ((TypeVariableReference) upperBound).getTypeVariable().getDeclaringElementKind() == TypeVariable.METHOD) {
b = true;
}
if (b) {
parameterizedWithTypeVariable = FuzzyBoolean.YES;
return true;
}
// FIXME asc need to check additional interface bounds
}
if (boundedRT.isSuper()) {
boolean b = false;
UnresolvedType lowerBound = boundedRT.getLowerBound();
if (lowerBound.isParameterizedType()) {
b = ((ResolvedType) lowerBound).isParameterizedWithTypeVariable();
} else if (lowerBound.isTypeVariableReference()
&& ((TypeVariableReference) lowerBound).getTypeVariable().getDeclaringElementKind() == TypeVariable.METHOD) {
b = true;
}
if (b) {
parameterizedWithTypeVariable = FuzzyBoolean.YES;
return true;
}
}
}
}
parameterizedWithTypeVariable = FuzzyBoolean.NO;
}
return parameterizedWithTypeVariable.alwaysTrue();
}
protected boolean ajMembersNeedParameterization() {
if (isParameterizedType()) {
return true;
}
ResolvedType superclass = getSuperclass();
if (superclass != null && !superclass.isMissing()) {
return superclass.ajMembersNeedParameterization();
}
return false;
}
protected Map<String, UnresolvedType> getAjMemberParameterizationMap() {
Map<String, UnresolvedType> myMap = getMemberParameterizationMap();
if (myMap.isEmpty()) {
// might extend a parameterized aspect that we also need to
// consider...
if (getSuperclass() != null) {
return getSuperclass().getAjMemberParameterizationMap();
}
}
return myMap;
}
public void setBinaryPath(String binaryPath) {
this.binaryPath = binaryPath;
}
/**
* Returns the path to the jar or class file from which this binary aspect came or null if not a binary aspect
*/
public String getBinaryPath() {
return binaryPath;
}
/**
* Undo any temporary modifications to the type (for example it may be holding annotations temporarily whilst some matching is
* occurring - These annotations will be added properly during weaving but sometimes for type completion they need to be held
* here for a while).
*/
public void ensureConsistent() {
// Nothing to do for anything except a ReferenceType
}
/**
* For an annotation type, this will return if it is marked with @Inherited
*/
public boolean isInheritedAnnotation() {
ensureAnnotationBitsInitialized();
return (bits & AnnotationMarkedInherited) != 0;
}
/*
* Setup the bitflags if they have not already been done.
*/
private void ensureAnnotationBitsInitialized() {
if ((bits & AnnotationBitsInitialized) == 0) {
bits |= AnnotationBitsInitialized;
// Is it marked @Inherited?
if (hasAnnotation(UnresolvedType.AT_INHERITED)) {
bits |= AnnotationMarkedInherited;
}
}
}
private boolean hasNewParentMungers() {
if ((bits & MungersAnalyzed) == 0) {
bits |= MungersAnalyzed;
for (ConcreteTypeMunger munger : interTypeMungers) {
ResolvedTypeMunger resolvedTypeMunger = munger.getMunger();
if (resolvedTypeMunger != null && resolvedTypeMunger.getKind() == ResolvedTypeMunger.Parent) {
bits |= HasParentMunger;
}
}
}
return (bits & HasParentMunger) != 0;
}
public void tagAsTypeHierarchyComplete() {
if (isParameterizedOrRawType()) {
ReferenceType genericType = this.getGenericType();
genericType.tagAsTypeHierarchyComplete();
return;
}
bits |= TypeHierarchyCompleteBit;
}
public boolean isTypeHierarchyComplete() {
if (isParameterizedOrRawType()) {
return this.getGenericType().isTypeHierarchyComplete();
}
return (bits & TypeHierarchyCompleteBit) != 0;
}
/**
* return the weaver version used to build this type - defaults to the most recent version unless discovered otherwise.
*
* @return the (major) version, {@link WeaverVersionInfo}
*/
public int getCompilerVersion() {
return WeaverVersionInfo.getCurrentWeaverMajorVersion();
}
public boolean isPrimitiveArray() {
return false;
}
public boolean isGroovyObject() {
if ((bits & GroovyObjectInitialized) == 0) {
ResolvedType[] intfaces = getDeclaredInterfaces();
boolean done = false;
// TODO do we need to walk more of these? (i.e. the interfaces interfaces and supertypes supertype). Check what groovy
// does in the case where a hierarchy is involved and there are types in between GroovyObject/GroovyObjectSupport and
// the type
if (intfaces != null) {
for (ResolvedType intface : intfaces) {
if (intface.getName().equals("groovy.lang.GroovyObject")) {
bits |= IsGroovyObject;
done = true;
break;
}
}
}
if (!done) {
// take a look at the supertype
if (getSuperclass().getName().equals("groovy.lang.GroovyObjectSupport")) {
bits |= IsGroovyObject;
}
}
bits |= GroovyObjectInitialized;
}
return (bits & IsGroovyObject) != 0;
}
}