blob: 6bba2d551b5962bd42c81df818266e7a55e0be62 [file] [log] [blame]
/* *******************************************************************
* Copyright (c) 2002 Palo Alto Research Center, Incorporated (PARC).
* 2005 Contributors
* All rights reserved.
* This program and the accompanying materials are made available
* under the terms of the Eclipse Public License v1.0
* which accompanies this distribution and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* PARC initial implementation
* Adrian Colyer, Andy Clement, overhaul for generics, Abraham Nevado
* ******************************************************************/
package org.aspectj.weaver;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.lang.ref.WeakReference;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
import java.util.WeakHashMap;
import org.aspectj.bridge.IMessage;
import org.aspectj.bridge.IMessage.Kind;
import org.aspectj.bridge.IMessageHandler;
import org.aspectj.bridge.ISourceLocation;
import org.aspectj.bridge.Message;
import org.aspectj.bridge.MessageUtil;
import org.aspectj.bridge.context.PinpointingMessageHandler;
import org.aspectj.util.IStructureModel;
import org.aspectj.weaver.ResolvedType.Primitive;
import org.aspectj.weaver.UnresolvedType.TypeKind;
import org.aspectj.weaver.patterns.Declare;
import org.aspectj.weaver.patterns.DeclareAnnotation;
import org.aspectj.weaver.patterns.DeclareParents;
import org.aspectj.weaver.patterns.DeclarePrecedence;
import org.aspectj.weaver.patterns.DeclareSoft;
import org.aspectj.weaver.patterns.DeclareTypeErrorOrWarning;
import org.aspectj.weaver.patterns.Pointcut;
import org.aspectj.weaver.patterns.TypePattern;
import org.aspectj.weaver.tools.PointcutDesignatorHandler;
import org.aspectj.weaver.tools.Trace;
import org.aspectj.weaver.tools.TraceFactory;
/**
* A World is a collection of known types and crosscutting members.
*/
public abstract class World implements Dump.INode {
/** handler for any messages produced during resolution etc. */
private IMessageHandler messageHandler = IMessageHandler.SYSTEM_ERR;
/** handler for cross-reference information produced during the weaving process */
private ICrossReferenceHandler xrefHandler = null;
/** Currently 'active' scope in which to lookup (resolve) typevariable references */
private TypeVariableDeclaringElement typeVariableLookupScope;
/** The heart of the world, a map from type signatures to resolved types */
protected TypeMap typeMap = new TypeMap(this);
/** New pointcut designators this world supports */
private Set<PointcutDesignatorHandler> pointcutDesignators;
// see pr145963
/** Should we create the hierarchy for binary classes and aspects */
public static boolean createInjarHierarchy = true;
/** Calculator for working out aspect precedence */
private final AspectPrecedenceCalculator precedenceCalculator;
/** All of the type and shadow mungers known to us */
private final CrosscuttingMembersSet crosscuttingMembersSet = new CrosscuttingMembersSet(this);
/** The structure model for the compilation */
private IStructureModel model = null;
/** for processing Xlint messages */
private Lint lint = new Lint(this);
/** XnoInline option setting passed down to weaver */
private boolean XnoInline;
/** XlazyTjp option setting passed down to weaver */
private boolean XlazyTjp;
/** XhasMember option setting passed down to weaver */
private boolean XhasMember = false;
/** Xpinpoint controls whether we put out developer info showing the source of messages */
private boolean Xpinpoint = false;
/** When behaving in a Java 5 way autoboxing is considered */
private boolean behaveInJava5Way = false;
/** Should timing information be reported (as info messages)? */
private boolean timing = false;
private boolean timingPeriodically = true;
/** Determines if this world could be used for multiple compiles */
private boolean incrementalCompileCouldFollow = false;
/** The level of the aspectjrt.jar the code we generate needs to run on */
private String targetAspectjRuntimeLevel = Constants.RUNTIME_LEVEL_DEFAULT;
/** Flags for the new joinpoints that are 'optional': -Xjoinpoints:arrayconstruction -Xjoinpoints:synchronization */
private boolean optionalJoinpoint_ArrayConstruction = false;
private boolean optionalJoinpoint_Synchronization = false;
private boolean addSerialVerUID = false;
private Properties extraConfiguration = null;
private boolean checkedAdvancedConfiguration = false;
private boolean synchronizationPointcutsInUse = false;
// Xset'table options
private boolean runMinimalMemory = false;
private boolean transientTjpFields = false;
private boolean runMinimalMemorySet = false;
private boolean shouldPipelineCompilation = true;
private boolean shouldGenerateStackMaps = false;
protected boolean bcelRepositoryCaching = xsetBCEL_REPOSITORY_CACHING_DEFAULT.equalsIgnoreCase("true");
private boolean fastMethodPacking = false;
private int itdVersion = 2; // defaults to 2nd generation itds
// Minimal Model controls whether model entities that are not involved in relationships are deleted post-build
private boolean minimalModel = true;
private boolean useFinal = true;
private boolean targettingRuntime1_6_10 = false;
private boolean completeBinaryTypes = false;
private boolean overWeaving = false;
private static boolean systemPropertyOverWeaving = false;
public boolean forDEBUG_structuralChangesCode = false;
public boolean forDEBUG_bridgingCode = false;
public boolean optimizedMatching = true;
public boolean generateNewLvts = true;
protected long timersPerJoinpoint = 25000;
protected long timersPerType = 250;
public int infoMessagesEnabled = 0; // 0=uninitialized, 1=no, 2=yes
private static Trace trace = TraceFactory.getTraceFactory().getTrace(World.class);
private boolean errorThreshold;
private boolean warningThreshold;
/**
* A list of RuntimeExceptions containing full stack information for every type we couldn't find.
*/
private List<RuntimeException> dumpState_cantFindTypeExceptions = null;
static {
try {
String value = System.getProperty("aspectj.overweaving", "false");
if (value.equalsIgnoreCase("true")) {
System.out.println("ASPECTJ: aspectj.overweaving=true: overweaving switched ON");
systemPropertyOverWeaving = true;
}
} catch (Throwable t) {
System.err.println("ASPECTJ: Unable to read system properties");
t.printStackTrace();
}
}
public final Primitive BYTE = new Primitive("B", 1, 0);
public final Primitive CHAR = new Primitive("C", 1, 1);
public final Primitive DOUBLE = new Primitive("D", 2, 2);
public final Primitive FLOAT = new Primitive("F", 1, 3);
public final Primitive INT = new Primitive("I", 1, 4);
public final Primitive LONG = new Primitive("J", 2, 5);
public final Primitive SHORT = new Primitive("S", 1, 6);
public final Primitive BOOLEAN = new Primitive("Z", 1, 7);
public final Primitive VOID = new Primitive("V", 0, 8);
/**
* Insert the primitives
*/
protected World() {
super();
// Dump.registerNode(this.getClass(), this);
typeMap.put("B", BYTE);
typeMap.put("S", SHORT);
typeMap.put("I", INT);
typeMap.put("J", LONG);
typeMap.put("F", FLOAT);
typeMap.put("D", DOUBLE);
typeMap.put("C", CHAR);
typeMap.put("Z", BOOLEAN);
typeMap.put("V", VOID);
precedenceCalculator = new AspectPrecedenceCalculator(this);
}
/**
* Dump processing when a fatal error occurs
*/
public void accept(Dump.IVisitor visitor) {
// visitor.visitObject("Extra configuration:");
// visitor.visitList(extraConfiguration.);
visitor.visitObject("Shadow mungers:");
visitor.visitList(crosscuttingMembersSet.getShadowMungers());
visitor.visitObject("Type mungers:");
visitor.visitList(crosscuttingMembersSet.getTypeMungers());
visitor.visitObject("Late Type mungers:");
visitor.visitList(crosscuttingMembersSet.getLateTypeMungers());
if (dumpState_cantFindTypeExceptions != null) {
visitor.visitObject("Cant find type problems:");
visitor.visitList(dumpState_cantFindTypeExceptions);
dumpState_cantFindTypeExceptions = null;
}
}
// ==========================================================================
// T Y P E R E S O L U T I O N
// ==========================================================================
/**
* Resolve a type that we require to be present in the world
*/
public ResolvedType resolve(UnresolvedType ty) {
return resolve(ty, false);
}
/**
* Attempt to resolve a type - the source location gives you some context in which resolution is taking place. In the case of an
* error where we can't find the type - we can then at least report why (source location) we were trying to resolve it.
*/
public ResolvedType resolve(UnresolvedType ty, ISourceLocation isl) {
ResolvedType ret = resolve(ty, true);
if (ResolvedType.isMissing(ty)) {
// IMessage msg = null;
getLint().cantFindType.signal(WeaverMessages.format(WeaverMessages.CANT_FIND_TYPE, ty.getName()), isl);
// if (isl!=null) {
// msg = MessageUtil.error(WeaverMessages.format(WeaverMessages.
// CANT_FIND_TYPE,ty.getName()),isl);
// } else {
// msg = MessageUtil.error(WeaverMessages.format(WeaverMessages.
// CANT_FIND_TYPE,ty.getName()));
// }
// messageHandler.handleMessage(msg);
}
return ret;
}
/**
* Convenience method for resolving an array of unresolved types in one hit. Useful for e.g. resolving type parameters in
* signatures.
*/
public ResolvedType[] resolve(UnresolvedType[] types) {
if (types == null) {
return ResolvedType.NONE;
}
ResolvedType[] ret = new ResolvedType[types.length];
for (int i = 0; i < types.length; i++) {
ret[i] = resolve(types[i]);
}
return ret;
}
/**
* Resolve a type. This the hub of type resolution. The resolved type is added to the type map by signature.
*/
public ResolvedType resolve(UnresolvedType ty, boolean allowMissing) {
// special resolution processing for already resolved types.
if (ty instanceof ResolvedType) {
ResolvedType rty = (ResolvedType) ty;
rty = resolve(rty);
// A TypeVariableReferenceType may look like it is resolved (it extends ResolvedType) but the internal
// type variable may not yet have been resolved
if (!rty.isTypeVariableReference() || ((TypeVariableReferenceType) rty).isTypeVariableResolved()) {
return rty;
}
}
// dispatch back to the type variable reference to resolve its
// constituent parts don't do this for other unresolved types otherwise
// you'll end up in a
// loop
if (ty.isTypeVariableReference()) {
return ty.resolve(this);
}
// if we've already got a resolved type for the signature, just return
// it
// after updating the world
String signature = ty.getSignature();
ResolvedType ret = typeMap.get(signature);
if (ret != null) {
ret.world = this; // Set the world for the RTX
return ret;
} else if (signature.equals("?") || signature.equals("*")) {
// might be a problem here, not sure '?' should make it to here as a
// signature, the
// proper signature for wildcard '?' is '*'
// fault in generic wildcard, can't be done earlier because of init
// issues
// TODO ought to be shared single instance representing this
ResolvedType something = getWildcard();
typeMap.put("?", something);
return something;
}
// no existing resolved type, create one
synchronized (buildingTypeLock) {
if (ty.isArray()) {
ResolvedType componentType = resolve(ty.getComponentType(), allowMissing);
ret = new ArrayReferenceType(signature, "[" + componentType.getErasureSignature(), this, componentType);
} else {
ret = resolveToReferenceType(ty, allowMissing);
if (!allowMissing && ret.isMissing()) {
ret = handleRequiredMissingTypeDuringResolution(ty);
}
if (completeBinaryTypes) {
completeBinaryType(ret);
}
}
}
// Pulling in the type may have already put the right entry in the map
ResolvedType result = typeMap.get(signature);
if (result == null && !ret.isMissing()) {
ret = ensureRawTypeIfNecessary(ret);
typeMap.put(signature, ret);
return ret;
}
if (result == null) {
return ret;
} else {
return result;
}
}
private Object buildingTypeLock = new Object();
// Only need one representation of '?' in a world - can be shared
private BoundedReferenceType wildcard;
private BoundedReferenceType getWildcard() {
if (wildcard == null) {
wildcard = new BoundedReferenceType(this);
}
return wildcard;
}
/**
* Called when a type is resolved - enables its type hierarchy to be finished off before we proceed
*/
protected void completeBinaryType(ResolvedType ret) {
}
/**
* Return true if the classloader relating to this world is definetly the one that will define the specified class. Return false
* otherwise or we don't know for certain.
*/
public boolean isLocallyDefined(String classname) {
return false;
}
/**
* We tried to resolve a type and couldn't find it...
*/
private ResolvedType handleRequiredMissingTypeDuringResolution(UnresolvedType ty) {
// defer the message until someone asks a question of the type that we
// can't answer
// just from the signature.
// MessageUtil.error(messageHandler,
// WeaverMessages.format(WeaverMessages.CANT_FIND_TYPE,ty.getName()));
if (dumpState_cantFindTypeExceptions == null) {
dumpState_cantFindTypeExceptions = new ArrayList<RuntimeException>();
}
if (dumpState_cantFindTypeExceptions.size() < 100) { // limit growth
dumpState_cantFindTypeExceptions.add(new RuntimeException("Can't find type " + ty.getName()));
}
return new MissingResolvedTypeWithKnownSignature(ty.getSignature(), this);
}
/**
* Some TypeFactory operations create resolved types directly, but these won't be in the typeMap - this resolution process puts
* them there. Resolved types are also told their world which is needed for the special autoboxing resolved types.
*/
public ResolvedType resolve(ResolvedType ty) {
if (ty.isTypeVariableReference()) {
return ty; // until type variables have proper sigs...
}
ResolvedType resolved = typeMap.get(ty.getSignature());
if (resolved == null) {
resolved = ensureRawTypeIfNecessary(ty);
typeMap.put(ty.getSignature(), resolved);
resolved = ty;
}
resolved.world = this;
return resolved;
}
/**
* When the world is operating in 1.5 mode, the TypeMap should only contain RAW types and never directly generic types. The RAW
* type will contain a reference to the generic type.
*
* @param type a possibly generic type for which the raw needs creating as it is not currently in the world
* @return a type suitable for putting into the world
*/
private ResolvedType ensureRawTypeIfNecessary(ResolvedType type) {
if (!isInJava5Mode() || type.isRawType()) {
return type;
}
// Key requirement here is if it is generic, create a RAW entry to be put in the map that points to it
if (type instanceof ReferenceType && ((ReferenceType) type).getDelegate() != null && type.isGenericType()) {
ReferenceType rawType = new ReferenceType(type.getSignature(), this);
rawType.typeKind = UnresolvedType.TypeKind.RAW;
ReferenceTypeDelegate delegate = ((ReferenceType) type).getDelegate();
rawType.setDelegate(delegate);
rawType.setGenericType((ReferenceType) type);
return rawType;
}
// probably parameterized...
return type;
}
/**
* Convenience method for finding a type by name and resolving it in one step.
*/
public ResolvedType resolve(String name) {
// trace.enter("resolve", this, new Object[] {name});
ResolvedType ret = resolve(UnresolvedType.forName(name));
// trace.exit("resolve", ret);
return ret;
}
public ReferenceType resolveToReferenceType(String name) {
return (ReferenceType) resolve(name);
}
public ResolvedType resolve(String name, boolean allowMissing) {
return resolve(UnresolvedType.forName(name), allowMissing);
}
/**
* Resolve to a ReferenceType - simple, raw, parameterized, or generic. Raw, parameterized, and generic versions of a type share
* a delegate.
*/
private final ResolvedType resolveToReferenceType(UnresolvedType ty, boolean allowMissing) {
if (ty.isParameterizedType()) {
// ======= parameterized types ================
ResolvedType rt = resolveGenericTypeFor(ty, allowMissing);
if (rt.isMissing()) {
return rt;
}
ReferenceType genericType = (ReferenceType) rt;
ReferenceType parameterizedType = TypeFactory.createParameterizedType(genericType, ty.typeParameters, this);
return parameterizedType;
} else if (ty.isGenericType()) {
// ======= generic types ======================
ResolvedType rt = resolveGenericTypeFor(ty, false);
ReferenceType genericType = (ReferenceType) rt;
if (rt.isMissing()) {
return rt;
}
return genericType;
} else if (ty.isGenericWildcard()) {
// ======= generic wildcard types =============
return resolveGenericWildcardFor((WildcardedUnresolvedType) ty);
} else {
// ======= simple and raw types ===============
String erasedSignature = ty.getErasureSignature();
ReferenceType simpleOrRawType = new ReferenceType(erasedSignature, this);
if (ty.needsModifiableDelegate()) {
simpleOrRawType.setNeedsModifiableDelegate(true);
}
ReferenceTypeDelegate delegate = resolveDelegate(simpleOrRawType);
if (delegate == null) {
return new MissingResolvedTypeWithKnownSignature(ty.getSignature(), erasedSignature, this);
}
if (delegate.isGeneric() && behaveInJava5Way) {
// ======== raw type ===========
simpleOrRawType.typeKind = TypeKind.RAW;
if (simpleOrRawType.hasNewInterfaces()) { // debug 375777
throw new IllegalStateException(
"Simple type promoted forced to raw, but it had new interfaces/superclass. Type is "
+ simpleOrRawType.getName());
}
ReferenceType genericType = makeGenericTypeFrom(delegate, simpleOrRawType);
simpleOrRawType.setDelegate(delegate);
genericType.setDelegate(delegate);
simpleOrRawType.setGenericType(genericType);
return simpleOrRawType;
} else {
// ======== simple type =========
simpleOrRawType.setDelegate(delegate);
return simpleOrRawType;
}
}
}
/**
* Attempt to resolve a type that should be a generic type.
*/
public ResolvedType resolveGenericTypeFor(UnresolvedType anUnresolvedType, boolean allowMissing) {
// Look up the raw type by signature
String rawSignature = anUnresolvedType.getRawType().getSignature();
ResolvedType rawType = typeMap.get(rawSignature);
if (rawType == null) {
rawType = resolve(UnresolvedType.forSignature(rawSignature), allowMissing);
typeMap.put(rawSignature, rawType);
}
if (rawType.isMissing()) {
return rawType;
}
// Does the raw type know its generic form? (It will if we created the
// raw type from a source type, it won't if its been created just
// through
// being referenced, e.g. java.util.List
ResolvedType genericType = rawType.getGenericType();
// There is a special case to consider here (testGenericsBang_pr95993
// highlights it)
// You may have an unresolvedType for a parameterized type but it
// is backed by a simple type rather than a generic type. This occurs
// for
// inner types of generic types that inherit their enclosing types
// type variables.
if (rawType.isSimpleType() && (anUnresolvedType.typeParameters == null || anUnresolvedType.typeParameters.length == 0)) {
rawType.world = this;
return rawType;
}
if (genericType != null) {
genericType.world = this;
return genericType;
} else {
// Fault in the generic that underpins the raw type ;)
ReferenceTypeDelegate delegate = resolveDelegate((ReferenceType) rawType);
ReferenceType genericRefType = makeGenericTypeFrom(delegate, ((ReferenceType) rawType));
((ReferenceType) rawType).setGenericType(genericRefType);
genericRefType.setDelegate(delegate);
((ReferenceType) rawType).setDelegate(delegate);
return genericRefType;
}
}
private ReferenceType makeGenericTypeFrom(ReferenceTypeDelegate delegate, ReferenceType rawType) {
String genericSig = delegate.getDeclaredGenericSignature();
if (genericSig != null) {
return new ReferenceType(UnresolvedType.forGenericTypeSignature(rawType.getSignature(),
delegate.getDeclaredGenericSignature()), this);
} else {
return new ReferenceType(UnresolvedType.forGenericTypeVariables(rawType.getSignature(), delegate.getTypeVariables()),
this);
}
}
/**
* Go from an unresolved generic wildcard (represented by UnresolvedType) to a resolved version (BoundedReferenceType).
*/
private ReferenceType resolveGenericWildcardFor(WildcardedUnresolvedType aType) {
BoundedReferenceType ret = null;
// FIXME asc doesnt take account of additional interface bounds (e.g. ? super R & Serializable - can you do that?)
if (aType.isExtends()) {
ResolvedType resolvedUpperBound = resolve(aType.getUpperBound());
if (resolvedUpperBound.isMissing()) {
return getWildcard();
}
ret = new BoundedReferenceType((ReferenceType)resolvedUpperBound, true, this);
} else if (aType.isSuper()) {
ResolvedType resolvedLowerBound = resolve(aType.getLowerBound());
if (resolvedLowerBound.isMissing()) {
return getWildcard();
}
ret = new BoundedReferenceType((ReferenceType)resolvedLowerBound, false, this);
} else {
// must be ? on its own!
ret = getWildcard();
}
return ret;
}
/**
* Find the ReferenceTypeDelegate behind this reference type so that it can fulfill its contract.
*/
protected abstract ReferenceTypeDelegate resolveDelegate(ReferenceType ty);
/**
* Special resolution for "core" types like OBJECT. These are resolved just like any other type, but if they are not found it is
* more serious and we issue an error message immediately.
*/
// OPTIMIZE streamline path for core types? They are just simple types,
// could look straight in the typemap?
public ResolvedType getCoreType(UnresolvedType tx) {
ResolvedType coreTy = resolve(tx, true);
if (coreTy.isMissing()) {
MessageUtil.error(messageHandler, WeaverMessages.format(WeaverMessages.CANT_FIND_CORE_TYPE, tx.getName()));
}
return coreTy;
}
/**
* Lookup a type by signature, if not found then build one and put it in the map.
*/
public ReferenceType lookupOrCreateName(UnresolvedType ty) {
String signature = ty.getSignature();
ReferenceType ret = lookupBySignature(signature);
if (ret == null) {
ret = ReferenceType.fromTypeX(ty, this);
typeMap.put(signature, ret);
}
return ret;
}
/**
* Lookup a reference type in the world by its signature. Returns null if not found.
*/
public ReferenceType lookupBySignature(String signature) {
return (ReferenceType) typeMap.get(signature);
}
// ==========================================================================
// ===
// T Y P E R E S O L U T I O N -- E N D
// ==========================================================================
// ===
/**
* Member resolution is achieved by resolving the declaring type and then looking up the member in the resolved declaring type.
*/
public ResolvedMember resolve(Member member) {
ResolvedType declaring = member.getDeclaringType().resolve(this);
if (declaring.isRawType()) {
declaring = declaring.getGenericType();
}
ResolvedMember ret;
if (member.getKind() == Member.FIELD) {
ret = declaring.lookupField(member);
} else {
ret = declaring.lookupMethod(member);
}
if (ret != null) {
return ret;
}
return declaring.lookupSyntheticMember(member);
}
private boolean allLintIgnored = false;
public void setAllLintIgnored() {
allLintIgnored = true;
}
public boolean areAllLintIgnored() {
return allLintIgnored;
}
public abstract IWeavingSupport getWeavingSupport();
/**
* Create an advice shadow munger from the given advice attribute
*/
// public abstract Advice createAdviceMunger(AjAttribute.AdviceAttribute
// attribute, Pointcut pointcut, Member signature);
/**
* Create an advice shadow munger for the given advice kind
*/
public final Advice createAdviceMunger(AdviceKind kind, Pointcut p, Member signature, int extraParameterFlags,
IHasSourceLocation loc, ResolvedType declaringAspect) {
AjAttribute.AdviceAttribute attribute = new AjAttribute.AdviceAttribute(kind, p, extraParameterFlags, loc.getStart(),
loc.getEnd(), loc.getSourceContext());
return getWeavingSupport().createAdviceMunger(attribute, p, signature, declaringAspect);
}
/**
* Same signature as org.aspectj.util.PartialOrder.PartialComparable.compareTo
*/
public int compareByPrecedence(ResolvedType aspect1, ResolvedType aspect2) {
return precedenceCalculator.compareByPrecedence(aspect1, aspect2);
}
public Integer getPrecedenceIfAny(ResolvedType aspect1, ResolvedType aspect2) {
return precedenceCalculator.getPrecedenceIfAny(aspect1, aspect2);
}
/**
* compares by precedence with the additional rule that a super-aspect is sorted before its sub-aspects
*/
public int compareByPrecedenceAndHierarchy(ResolvedType aspect1, ResolvedType aspect2) {
return precedenceCalculator.compareByPrecedenceAndHierarchy(aspect1, aspect2);
}
// simple property getter and setters
// ===========================================================
/**
* Nobody should hold onto a copy of this message handler, or setMessageHandler won't work right.
*/
public IMessageHandler getMessageHandler() {
return messageHandler;
}
public void setMessageHandler(IMessageHandler messageHandler) {
if (this.isInPinpointMode()) {
this.messageHandler = new PinpointingMessageHandler(messageHandler);
} else {
this.messageHandler = messageHandler;
}
}
/**
* convenenience method for creating and issuing messages via the message handler - if you supply two locations you will get two
* messages.
*/
public void showMessage(Kind kind, String message, ISourceLocation loc1, ISourceLocation loc2) {
if (loc1 != null) {
messageHandler.handleMessage(new Message(message, kind, null, loc1));
if (loc2 != null) {
messageHandler.handleMessage(new Message(message, kind, null, loc2));
}
} else {
messageHandler.handleMessage(new Message(message, kind, null, loc2));
}
}
public void setCrossReferenceHandler(ICrossReferenceHandler xrefHandler) {
this.xrefHandler = xrefHandler;
}
/**
* Get the cross-reference handler for the world, may be null.
*/
public ICrossReferenceHandler getCrossReferenceHandler() {
return xrefHandler;
}
public void setTypeVariableLookupScope(TypeVariableDeclaringElement scope) {
typeVariableLookupScope = scope;
}
public TypeVariableDeclaringElement getTypeVariableLookupScope() {
return typeVariableLookupScope;
}
public List<DeclareParents> getDeclareParents() {
return crosscuttingMembersSet.getDeclareParents();
}
public List<DeclareAnnotation> getDeclareAnnotationOnTypes() {
return crosscuttingMembersSet.getDeclareAnnotationOnTypes();
}
public List<DeclareAnnotation> getDeclareAnnotationOnFields() {
return crosscuttingMembersSet.getDeclareAnnotationOnFields();
}
public List<DeclareAnnotation> getDeclareAnnotationOnMethods() {
return crosscuttingMembersSet.getDeclareAnnotationOnMethods();
}
public List<DeclareTypeErrorOrWarning> getDeclareTypeEows() {
return crosscuttingMembersSet.getDeclareTypeEows();
}
public List<DeclareSoft> getDeclareSoft() {
return crosscuttingMembersSet.getDeclareSofts();
}
public CrosscuttingMembersSet getCrosscuttingMembersSet() {
return crosscuttingMembersSet;
}
public IStructureModel getModel() {
return model;
}
public void setModel(IStructureModel model) {
this.model = model;
}
public Lint getLint() {
return lint;
}
public void setLint(Lint lint) {
this.lint = lint;
}
public boolean isXnoInline() {
return XnoInline;
}
public void setXnoInline(boolean xnoInline) {
XnoInline = xnoInline;
}
public boolean isXlazyTjp() {
return XlazyTjp;
}
public void setXlazyTjp(boolean b) {
XlazyTjp = b;
}
public boolean isHasMemberSupportEnabled() {
return XhasMember;
}
public void setXHasMemberSupportEnabled(boolean b) {
XhasMember = b;
}
public boolean isInPinpointMode() {
return Xpinpoint;
}
public void setPinpointMode(boolean b) {
Xpinpoint = b;
}
public boolean useFinal() {
return useFinal;
}
public boolean isMinimalModel() {
ensureAdvancedConfigurationProcessed();
return minimalModel;
}
public boolean isTargettingRuntime1_6_10() {
ensureAdvancedConfigurationProcessed();
return targettingRuntime1_6_10;
}
public void setBehaveInJava5Way(boolean b) {
behaveInJava5Way = b;
}
/**
* Set the timing option (whether to collect timing info), this will also need INFO messages turned on for the message handler
* being used. The reportPeriodically flag should be set to false under AJDT so numbers just come out at the end.
*/
public void setTiming(boolean timersOn, boolean reportPeriodically) {
timing = timersOn;
timingPeriodically = reportPeriodically;
}
/**
* Set the error and warning threashold which can be taken from CompilerOptions (see bug 129282)
*
* @param errorThreshold
* @param warningThreshold
*/
public void setErrorAndWarningThreshold(boolean errorThreshold, boolean warningThreshold) {
this.errorThreshold = errorThreshold;
this.warningThreshold = warningThreshold;
}
/**
* @return true if ignoring the UnusedDeclaredThrownException and false if this compiler option is set to error or warning
*/
public boolean isIgnoringUnusedDeclaredThrownException() {
// the 0x800000 is CompilerOptions.UnusedDeclaredThrownException
// which is ASTNode.bit24
return errorThreshold||warningThreshold;
// if ((errorThreshold & 0x800000) != 0 || (warningThreshold & 0x800000) != 0) {
// return false;
// }
// return true;
}
public void performExtraConfiguration(String config) {
if (config == null) {
return;
}
// Bunch of name value pairs to split
extraConfiguration = new Properties();
int pos = -1;
while ((pos = config.indexOf(",")) != -1) {
String nvpair = config.substring(0, pos);
int pos2 = nvpair.indexOf("=");
if (pos2 != -1) {
String n = nvpair.substring(0, pos2);
String v = nvpair.substring(pos2 + 1);
extraConfiguration.setProperty(n, v);
}
config = config.substring(pos + 1);
}
if (config.length() > 0) {
int pos2 = config.indexOf("=");
if (pos2 != -1) {
String n = config.substring(0, pos2);
String v = config.substring(pos2 + 1);
extraConfiguration.setProperty(n, v);
}
}
ensureAdvancedConfigurationProcessed();
}
public boolean areInfoMessagesEnabled() {
if (infoMessagesEnabled == 0) {
infoMessagesEnabled = (messageHandler.isIgnoring(IMessage.INFO) ? 1 : 2);
}
return infoMessagesEnabled == 2;
}
/**
* may return null
*/
public Properties getExtraConfiguration() {
return extraConfiguration;
}
public final static String xsetAVOID_FINAL = "avoidFinal"; // default true
public final static String xsetWEAVE_JAVA_PACKAGES = "weaveJavaPackages"; // default
// false
// -
// controls
// LTW
public final static String xsetWEAVE_JAVAX_PACKAGES = "weaveJavaxPackages"; // default
// false
// -
// controls
// LTW
public final static String xsetCAPTURE_ALL_CONTEXT = "captureAllContext"; // default
// false
public final static String xsetRUN_MINIMAL_MEMORY = "runMinimalMemory"; // default
// true
public final static String xsetDEBUG_STRUCTURAL_CHANGES_CODE = "debugStructuralChangesCode"; // default
// false
public final static String xsetDEBUG_BRIDGING = "debugBridging"; // default
// false
public final static String xsetTRANSIENT_TJP_FIELDS = "makeTjpFieldsTransient"; // default false
public final static String xsetBCEL_REPOSITORY_CACHING = "bcelRepositoryCaching";
public final static String xsetPIPELINE_COMPILATION = "pipelineCompilation";
public final static String xsetGENERATE_STACKMAPS = "generateStackMaps";
public final static String xsetPIPELINE_COMPILATION_DEFAULT = "true";
public final static String xsetCOMPLETE_BINARY_TYPES = "completeBinaryTypes";
public final static String xsetCOMPLETE_BINARY_TYPES_DEFAULT = "false";
public final static String xsetTYPE_DEMOTION = "typeDemotion";
public final static String xsetTYPE_DEMOTION_DEBUG = "typeDemotionDebug";
public final static String xsetTYPE_REFS = "useWeakTypeRefs";
public final static String xsetBCEL_REPOSITORY_CACHING_DEFAULT = "true";
public final static String xsetFAST_PACK_METHODS = "fastPackMethods"; // default true
public final static String xsetOVERWEAVING = "overWeaving";
public final static String xsetOPTIMIZED_MATCHING = "optimizedMatching";
public final static String xsetTIMERS_PER_JOINPOINT = "timersPerJoinpoint";
public final static String xsetTIMERS_PER_FASTMATCH_CALL = "timersPerFastMatchCall";
public final static String xsetITD_VERSION = "itdVersion";
public final static String xsetITD_VERSION_ORIGINAL = "1";
public final static String xsetITD_VERSION_2NDGEN = "2";
public final static String xsetITD_VERSION_DEFAULT = xsetITD_VERSION_2NDGEN;
public final static String xsetMINIMAL_MODEL = "minimalModel";
public final static String xsetTARGETING_RUNTIME_1610 = "targetRuntime1_6_10";
// This option allows you to prevent AspectJ adding local variable tables - some tools (e.g. dex) may
// not like what gets created because even though it is valid, the bytecode they are processing has
// unexpected quirks that mean the table entries are violated in the code. See issue:
// https://bugs.eclipse.org/bugs/show_bug.cgi?id=470658
public final static String xsetGENERATE_NEW_LVTS="generateNewLocalVariableTables";
public boolean isInJava5Mode() {
return behaveInJava5Way;
}
public boolean isTimingEnabled() {
return timing;
}
public void setTargetAspectjRuntimeLevel(String s) {
targetAspectjRuntimeLevel = s;
}
public void setOptionalJoinpoints(String jps) {
if (jps == null) {
return;
}
if (jps.indexOf("arrayconstruction") != -1) {
optionalJoinpoint_ArrayConstruction = true;
}
if (jps.indexOf("synchronization") != -1) {
optionalJoinpoint_Synchronization = true;
}
}
public boolean isJoinpointArrayConstructionEnabled() {
return optionalJoinpoint_ArrayConstruction;
}
public boolean isJoinpointSynchronizationEnabled() {
return optionalJoinpoint_Synchronization;
}
public String getTargetAspectjRuntimeLevel() {
return targetAspectjRuntimeLevel;
}
// OPTIMIZE are users falling foul of not supplying -1.5 and so targetting
// the old runtime?
public boolean isTargettingAspectJRuntime12() {
boolean b = false; // pr116679
if (!isInJava5Mode()) {
b = true;
} else {
b = getTargetAspectjRuntimeLevel().equals(org.aspectj.weaver.Constants.RUNTIME_LEVEL_12);
}
// System.err.println("Asked if targetting runtime 1.2 , returning: "+b);
return b;
}
/*
* Map of types in the world, can have 'references' to expendable ones which can be garbage collected to recover memory. An
* expendable type is a reference type that is not exposed to the weaver (ie just pulled in for type resolution purposes).
* Generic types have their raw form added to the map, which has a pointer to the underlying generic.
*/
public static class TypeMap {
// Strategy for entries in the expendable map
public final static int DONT_USE_REFS = 0; // Hang around forever
public final static int USE_WEAK_REFS = 1; // Collected asap
public final static int USE_SOFT_REFS = 2; // Collected when short on memory
public List<String> addedSinceLastDemote;
public List<String> writtenClasses;
private static boolean debug = false;
public static boolean useExpendableMap = true; // configurable for reliable testing
private boolean demotionSystemActive;
private boolean debugDemotion = false;
public int policy = USE_WEAK_REFS;
// Map of types that never get thrown away
final Map<String, ResolvedType> tMap = new HashMap<String, ResolvedType>();
// Map of types that may be ejected from the cache if we need space
final Map<String, Reference<ResolvedType>> expendableMap = Collections
.synchronizedMap(new WeakHashMap<String, Reference<ResolvedType>>());
private final World w;
// profiling tools...
private boolean memoryProfiling = false;
private int maxExpendableMapSize = -1;
private int collectedTypes = 0;
private final ReferenceQueue<ResolvedType> rq = new ReferenceQueue<ResolvedType>();
TypeMap(World w) {
// Demotion activated when switched on and loadtime weaving or in AJDT
demotionSystemActive = w.isDemotionActive() && (w.isLoadtimeWeaving() || w.couldIncrementalCompileFollow());
addedSinceLastDemote = new ArrayList<String>();
writtenClasses = new ArrayList<String>();
this.w = w;
memoryProfiling = false;// !w.getMessageHandler().isIgnoring(Message.
// INFO);
}
// For testing
public Map<String, Reference<ResolvedType>> getExpendableMap() {
return expendableMap;
}
// For testing
public Map<String, ResolvedType> getMainMap() {
return tMap;
}
public int demote() {
return demote(false);
}
/**
* Go through any types added during the previous file weave. If any are suitable for demotion, then put them in the
* expendable map where GC can claim them at some point later. Demotion means: the type is not an aspect, the type is not
* java.lang.Object, the type is not primitive and the type is not affected by type mungers in any way. Further refinements
* of these conditions may allow for more demotions.
*
* @return number of types demoted
*/
public int demote(boolean atEndOfCompile) {
if (!demotionSystemActive) {
return 0;
}
if (debugDemotion) {
System.out.println("Demotion running " + addedSinceLastDemote);
}
boolean isLtw = w.isLoadtimeWeaving();
int demotionCounter = 0;
if (isLtw) {
// Loadtime weaving demotion strategy
for (String key : addedSinceLastDemote) {
ResolvedType type = tMap.get(key);
if (type != null && !type.isAspect() && !type.equals(UnresolvedType.OBJECT) && !type.isPrimitiveType()) {
List<ConcreteTypeMunger> typeMungers = type.getInterTypeMungers();
if (typeMungers == null || typeMungers.size() == 0) {
tMap.remove(key);
insertInExpendableMap(key, type);
demotionCounter++;
}
}
}
addedSinceLastDemote.clear();
} else {
// Compile time demotion strategy
List<String> forRemoval = new ArrayList<String>();
for (String key : addedSinceLastDemote) {
ResolvedType type = tMap.get(key);
if (type == null) {
// TODO not 100% sure why it is not there, where did it go?
forRemoval.add(key);
continue;
}
if (!writtenClasses.contains(type.getName())) { // COSTLY
continue;
}
if (type != null && !type.isAspect() && !type.equals(UnresolvedType.OBJECT) && !type.isPrimitiveType()) {
List<ConcreteTypeMunger> typeMungers = type.getInterTypeMungers();
if (typeMungers == null || typeMungers.size() == 0) {
/*
* if (type.isNested()) { try { ReferenceType rt = (ReferenceType) w.resolve(type.getOutermostType());
* if (!rt.isMissing()) { ReferenceTypeDelegate delegate = ((ReferenceType) type).getDelegate(); boolean
* isWeavable = delegate == null ? false : delegate.isExposedToWeaver(); boolean hasBeenWoven = delegate
* == null ? false : delegate.hasBeenWoven(); if (isWeavable && !hasBeenWoven) { // skip demotion of
* this inner type for now continue; } } } catch (ClassCastException cce) { cce.printStackTrace();
* System.out.println("outer of " + key + " is not a reftype? " + type.getOutermostType()); // throw new
* IllegalStateException(cce); } }
*/
ReferenceTypeDelegate delegate = ((ReferenceType) type).getDelegate();
boolean isWeavable = delegate == null ? false : delegate.isExposedToWeaver();
boolean hasBeenWoven = delegate == null ? false : delegate.hasBeenWoven();
if (!isWeavable || hasBeenWoven) {
if (debugDemotion) {
System.out.println("Demoting " + key);
}
forRemoval.add(key);
tMap.remove(key);
insertInExpendableMap(key, type);
demotionCounter++;
}
} else {
// no need to try this again, it will never be demoted
writtenClasses.remove(type.getName());
forRemoval.add(key);
}
} else {
writtenClasses.remove(type.getName());
// no need to try this again, it will never be demoted
forRemoval.add(key);
}
}
addedSinceLastDemote.removeAll(forRemoval);
}
if (debugDemotion) {
System.out.println("Demoted " + demotionCounter + " types. Types remaining in fixed set #" + tMap.keySet().size()
+ ". addedSinceLastDemote size is " + addedSinceLastDemote.size());
System.out.println("writtenClasses.size() = " + writtenClasses.size() + ": " + writtenClasses);
}
if (atEndOfCompile) {
if (debugDemotion) {
System.out.println("Clearing writtenClasses");
}
writtenClasses.clear();
}
return demotionCounter;
}
private void insertInExpendableMap(String key, ResolvedType type) {
if (useExpendableMap) {
if (!expendableMap.containsKey(key)) {
if (policy == USE_SOFT_REFS) {
expendableMap.put(key, new SoftReference<ResolvedType>(type));
} else {
expendableMap.put(key, new WeakReference<ResolvedType>(type));
}
}
}
}
/**
* Add a new type into the map, the key is the type signature. Some types do *not* go in the map, these are ones involving
* *member* type variables. The reason is that when all you have is the signature which gives you a type variable name, you
* cannot guarantee you are using the type variable in the same way as someone previously working with a similarly named
* type variable. So, these do not go into the map: - TypeVariableReferenceType. - ParameterizedType where a member type
* variable is involved. - BoundedReferenceType when one of the bounds is a type variable.
*
* definition: "member type variables" - a tvar declared on a generic method/ctor as opposed to those you see declared on a
* generic type.
*/
public ResolvedType put(String key, ResolvedType type) {
if (!type.isCacheable()) {
return type;
}
if (type.isParameterizedType() && type.isParameterizedWithTypeVariable()) {
if (debug) {
System.err
.println("Not putting a parameterized type that utilises member declared type variables into the typemap: key="
+ key + " type=" + type);
}
return type;
}
if (type.isTypeVariableReference()) {
if (debug) {
System.err.println("Not putting a type variable reference type into the typemap: key=" + key + " type=" + type);
}
return type;
}
// this test should be improved - only avoid putting them in if one
// of the
// bounds is a member type variable
if (type instanceof BoundedReferenceType) {
if (debug) {
System.err.println("Not putting a bounded reference type into the typemap: key=" + key + " type=" + type);
}
return type;
}
if (type instanceof MissingResolvedTypeWithKnownSignature) {
if (debug) {
System.err.println("Not putting a missing type into the typemap: key=" + key + " type=" + type);
}
return type;
}
if ((type instanceof ReferenceType) && (((ReferenceType) type).getDelegate() == null) && w.isExpendable(type)) {
if (debug) {
System.err.println("Not putting expendable ref type with null delegate into typemap: key=" + key + " type="
+ type);
}
return type;
}
// TODO should this be in as a permanent assertion?
if ((type instanceof ReferenceType) && type.getWorld().isInJava5Mode()
&& (((ReferenceType) type).getDelegate() != null) && type.isGenericType()) {
throw new BCException("Attempt to add generic type to typemap " + type.toString() + " (should be raw)");
}
if (w.isExpendable(type)) {
if (useExpendableMap) {
// Dont use reference queue for tracking if not profiling...
if (policy == USE_WEAK_REFS) {
if (memoryProfiling) {
expendableMap.put(key, new WeakReference<ResolvedType>(type, rq));
} else {
expendableMap.put(key, new WeakReference<ResolvedType>(type));
}
} else if (policy == USE_SOFT_REFS) {
if (memoryProfiling) {
expendableMap.put(key, new SoftReference<ResolvedType>(type, rq));
} else {
expendableMap.put(key, new SoftReference<ResolvedType>(type));
}
// } else {
// expendableMap.put(key, type);
}
}
if (memoryProfiling && expendableMap.size() > maxExpendableMapSize) {
maxExpendableMapSize = expendableMap.size();
}
return type;
} else {
if (demotionSystemActive) {
// System.out.println("Added since last demote " + key);
addedSinceLastDemote.add(key);
}
return tMap.put(key, type);
}
}
public void report() {
if (!memoryProfiling) {
return;
}
checkq();
w.getMessageHandler().handleMessage(
MessageUtil.info("MEMORY: world expendable type map reached maximum size of #" + maxExpendableMapSize
+ " entries"));
w.getMessageHandler().handleMessage(
MessageUtil.info("MEMORY: types collected through garbage collection #" + collectedTypes + " entries"));
}
public void checkq() {
if (!memoryProfiling) {
return;
}
Reference<? extends ResolvedType> r = null;
while ((r=rq.poll()) != null) {
collectedTypes++;
}
}
/**
* Lookup a type by its signature, always look in the real map before the expendable map
*/
public ResolvedType get(String key) {
checkq();
ResolvedType ret = tMap.get(key);
if (ret == null) {
if (policy == USE_WEAK_REFS) {
WeakReference<ResolvedType> ref = (WeakReference<ResolvedType>) expendableMap.get(key);
if (ref != null) {
ret = ref.get();
// if (ret==null) {
// expendableMap.remove(key);
// }
}
} else if (policy == USE_SOFT_REFS) {
SoftReference<ResolvedType> ref = (SoftReference<ResolvedType>) expendableMap.get(key);
if (ref != null) {
ret = ref.get();
// if (ret==null) {
// expendableMap.remove(key);
// }
}
// } else {
// return (ResolvedType) expendableMap.get(key);
}
}
return ret;
}
/** Remove a type from the map */
public ResolvedType remove(String key) {
ResolvedType ret = tMap.remove(key);
if (ret == null) {
if (policy == USE_WEAK_REFS) {
WeakReference<ResolvedType> wref = (WeakReference<ResolvedType>) expendableMap.remove(key);
if (wref != null) {
ret = wref.get();
}
} else if (policy == USE_SOFT_REFS) {
SoftReference<ResolvedType> wref = (SoftReference<ResolvedType>) expendableMap.remove(key);
if (wref != null) {
ret = wref.get();
}
// } else {
// ret = (ResolvedType) expendableMap.remove(key);
}
}
return ret;
}
public void classWriteEvent(String classname) {
// that is a name com.Foo and not a signature Lcom/Foo; boooooooooo!
if (demotionSystemActive) {
writtenClasses.add(classname);
}
if (debugDemotion) {
System.out.println("Class write event for " + classname);
}
}
public void demote(ResolvedType type) {
String key = type.getSignature();
if (debugDemotion) {
addedSinceLastDemote.remove(key);
}
tMap.remove(key);
insertInExpendableMap(key, type);
}
// public ResolvedType[] getAllTypes() {
// List/* ResolvedType */results = new ArrayList();
//
// collectTypes(expendableMap, results);
// collectTypes(tMap, results);
// return (ResolvedType[]) results.toArray(new
// ResolvedType[results.size()]);
// }
//
// private void collectTypes(Map map, List/* ResolvedType */results) {
// for (Iterator iterator = map.keySet().iterator();
// iterator.hasNext();) {
// String key = (String) iterator.next();
// ResolvedType type = get(key);
// if (type != null)
// results.add(type);
// else
// System.err.println("null!:" + key);
// }
// }
}
/**
* This class is used to compute and store precedence relationships between aspects.
*/
private static class AspectPrecedenceCalculator {
private final World world;
private final Map<PrecedenceCacheKey, Integer> cachedResults;
public AspectPrecedenceCalculator(World forSomeWorld) {
world = forSomeWorld;
cachedResults = new HashMap<PrecedenceCacheKey, Integer>();
}
/**
* Ask every declare precedence in the world to order the two aspects. If more than one declare precedence gives an
* ordering, and the orderings conflict, then that's an error.
*/
public int compareByPrecedence(ResolvedType firstAspect, ResolvedType secondAspect) {
PrecedenceCacheKey key = new PrecedenceCacheKey(firstAspect, secondAspect);
if (cachedResults.containsKey(key)) {
return (cachedResults.get(key)).intValue();
} else {
int order = 0;
DeclarePrecedence orderer = null; // Records the declare
// precedence statement that
// gives the first ordering
for (Iterator<Declare> i = world.getCrosscuttingMembersSet().getDeclareDominates().iterator(); i.hasNext();) {
DeclarePrecedence d = (DeclarePrecedence) i.next();
int thisOrder = d.compare(firstAspect, secondAspect);
if (thisOrder != 0) {
if (orderer == null) {
orderer = d;
}
if (order != 0 && order != thisOrder) {
ISourceLocation[] isls = new ISourceLocation[2];
isls[0] = orderer.getSourceLocation();
isls[1] = d.getSourceLocation();
Message m = new Message("conflicting declare precedence orderings for aspects: "
+ firstAspect.getName() + " and " + secondAspect.getName(), null, true, isls);
world.getMessageHandler().handleMessage(m);
} else {
order = thisOrder;
}
}
}
cachedResults.put(key, new Integer(order));
return order;
}
}
public Integer getPrecedenceIfAny(ResolvedType aspect1, ResolvedType aspect2) {
return cachedResults.get(new PrecedenceCacheKey(aspect1, aspect2));
}
public int compareByPrecedenceAndHierarchy(ResolvedType firstAspect, ResolvedType secondAspect) {
if (firstAspect.equals(secondAspect)) {
return 0;
}
int ret = compareByPrecedence(firstAspect, secondAspect);
if (ret != 0) {
return ret;
}
if (firstAspect.isAssignableFrom(secondAspect)) {
return -1;
} else if (secondAspect.isAssignableFrom(firstAspect)) {
return +1;
}
return 0;
}
private static class PrecedenceCacheKey {
public ResolvedType aspect1;
public ResolvedType aspect2;
public PrecedenceCacheKey(ResolvedType a1, ResolvedType a2) {
aspect1 = a1;
aspect2 = a2;
}
@Override
public boolean equals(Object obj) {
if (!(obj instanceof PrecedenceCacheKey)) {
return false;
}
PrecedenceCacheKey other = (PrecedenceCacheKey) obj;
return (aspect1 == other.aspect1 && aspect2 == other.aspect2);
}
@Override
public int hashCode() {
return aspect1.hashCode() + aspect2.hashCode();
}
}
}
public void validateType(UnresolvedType type) {
}
// --- with java5 we can get into a recursive mess if we aren't careful when
// resolving types (*cough* java.lang.Enum) ---
public boolean isDemotionActive() {
return true;
}
// --- this first map is for java15 delegates which may try and recursively
// access the same type variables.
// --- I would rather stash this against a reference type - but we don't
// guarantee referencetypes are unique for
// so we can't :(
private final Map<Class<?>, TypeVariable[]> workInProgress1 = new HashMap<Class<?>, TypeVariable[]>();
public TypeVariable[] getTypeVariablesCurrentlyBeingProcessed(Class<?> baseClass) {
return workInProgress1.get(baseClass);
}
public void recordTypeVariablesCurrentlyBeingProcessed(Class<?> baseClass, TypeVariable[] typeVariables) {
workInProgress1.put(baseClass, typeVariables);
}
public void forgetTypeVariablesCurrentlyBeingProcessed(Class<?> baseClass) {
workInProgress1.remove(baseClass);
}
public void setAddSerialVerUID(boolean b) {
addSerialVerUID = b;
}
public boolean isAddSerialVerUID() {
return addSerialVerUID;
}
/** be careful calling this - pr152257 */
public void flush() {
typeMap.expendableMap.clear();
}
public void ensureAdvancedConfigurationProcessed() {
// Check *once* whether the user has switched asm support off
if (!checkedAdvancedConfiguration) {
Properties p = getExtraConfiguration();
if (p != null) {
String s = p.getProperty(xsetBCEL_REPOSITORY_CACHING, xsetBCEL_REPOSITORY_CACHING_DEFAULT);
bcelRepositoryCaching = s.equalsIgnoreCase("true");
if (!bcelRepositoryCaching) {
getMessageHandler().handleMessage(
MessageUtil
.info("[bcelRepositoryCaching=false] AspectJ will not use a bcel cache for class information"));
}
// ITD Versions
// 1 is the first version in use up to AspectJ 1.6.8
// 2 is from 1.6.9 onwards
s = p.getProperty(xsetITD_VERSION, xsetITD_VERSION_DEFAULT);
if (s.equals(xsetITD_VERSION_ORIGINAL)) {
itdVersion = 1;
}
s = p.getProperty(xsetAVOID_FINAL, "false");
if (s.equalsIgnoreCase("true")) {
useFinal = false; // if avoidFinal=true, then set useFinal to false
}
s = p.getProperty(xsetMINIMAL_MODEL, "true");
if (s.equalsIgnoreCase("false")) {
minimalModel = false;
}
s = p.getProperty(xsetTARGETING_RUNTIME_1610, "false");
if (s.equalsIgnoreCase("true")) {
targettingRuntime1_6_10 = true;
}
s = p.getProperty(xsetFAST_PACK_METHODS, "true");
fastMethodPacking = s.equalsIgnoreCase("true");
s = p.getProperty(xsetPIPELINE_COMPILATION, xsetPIPELINE_COMPILATION_DEFAULT);
shouldPipelineCompilation = s.equalsIgnoreCase("true");
s = p.getProperty(xsetGENERATE_STACKMAPS, "false");
shouldGenerateStackMaps = s.equalsIgnoreCase("true");
s = p.getProperty(xsetCOMPLETE_BINARY_TYPES, xsetCOMPLETE_BINARY_TYPES_DEFAULT);
completeBinaryTypes = s.equalsIgnoreCase("true");
if (completeBinaryTypes) {
getMessageHandler().handleMessage(
MessageUtil.info("[completeBinaryTypes=true] Completion of binary types activated"));
}
s = p.getProperty(xsetTYPE_DEMOTION); // default is: ON
if (s != null) {
boolean b = typeMap.demotionSystemActive;
if (b && s.equalsIgnoreCase("false")) {
System.out.println("typeDemotion=false: type demotion switched OFF");
typeMap.demotionSystemActive = false;
} else if (!b && s.equalsIgnoreCase("true")) {
System.out.println("typeDemotion=true: type demotion switched ON");
typeMap.demotionSystemActive = true;
}
}
s = p.getProperty(xsetOVERWEAVING, "false");
if (s.equalsIgnoreCase("true")) {
overWeaving = true;
}
s = p.getProperty(xsetTYPE_DEMOTION_DEBUG, "false");
if (s.equalsIgnoreCase("true")) {
typeMap.debugDemotion = true;
}
s = p.getProperty(xsetTYPE_REFS, "true");
if (s.equalsIgnoreCase("false")) {
typeMap.policy = TypeMap.USE_SOFT_REFS;
}
runMinimalMemorySet = p.getProperty(xsetRUN_MINIMAL_MEMORY) != null;
s = p.getProperty(xsetRUN_MINIMAL_MEMORY, "false");
runMinimalMemory = s.equalsIgnoreCase("true");
// if (runMinimalMemory)
// getMessageHandler().handleMessage(MessageUtil.info(
// "[runMinimalMemory=true] Optimizing bcel processing (and cost of performance) to use less memory"
// ));
s = p.getProperty(xsetDEBUG_STRUCTURAL_CHANGES_CODE, "false");
forDEBUG_structuralChangesCode = s.equalsIgnoreCase("true");
s = p.getProperty(xsetTRANSIENT_TJP_FIELDS,"false");
transientTjpFields = s.equalsIgnoreCase("true");
s = p.getProperty(xsetDEBUG_BRIDGING, "false");
forDEBUG_bridgingCode = s.equalsIgnoreCase("true");
s = p.getProperty(xsetGENERATE_NEW_LVTS,"true");
generateNewLvts = s.equalsIgnoreCase("true");
if (!generateNewLvts) {
getMessageHandler().handleMessage(MessageUtil.info("[generateNewLvts=false] for methods without an incoming local variable table, do not generate one"));
}
s = p.getProperty(xsetOPTIMIZED_MATCHING, "true");
optimizedMatching = s.equalsIgnoreCase("true");
if (!optimizedMatching) {
getMessageHandler().handleMessage(MessageUtil.info("[optimizedMatching=false] optimized matching turned off"));
}
s = p.getProperty(xsetTIMERS_PER_JOINPOINT, "25000");
try {
timersPerJoinpoint = Integer.parseInt(s);
} catch (Exception e) {
getMessageHandler().handleMessage(MessageUtil.error("unable to process timersPerJoinpoint value of " + s));
timersPerJoinpoint = 25000;
}
s = p.getProperty(xsetTIMERS_PER_FASTMATCH_CALL, "250");
try {
timersPerType = Integer.parseInt(s);
} catch (Exception e) {
getMessageHandler().handleMessage(MessageUtil.error("unable to process timersPerType value of " + s));
timersPerType = 250;
}
}
try {
if (systemPropertyOverWeaving) {
overWeaving = true;
}
String value = null;
value = System.getProperty("aspectj.typeDemotion", "false");
if (value.equalsIgnoreCase("true")) {
System.out.println("ASPECTJ: aspectj.typeDemotion=true: type demotion switched ON");
typeMap.demotionSystemActive = true;
}
value = System.getProperty("aspectj.minimalModel", "false");
if (value.equalsIgnoreCase("true")) {
System.out.println("ASPECTJ: aspectj.minimalModel=true: minimal model switched ON");
minimalModel = true;
}
} catch (Throwable t) {
System.err.println("ASPECTJ: Unable to read system properties");
t.printStackTrace();
}
checkedAdvancedConfiguration = true;
}
}
public boolean isRunMinimalMemory() {
ensureAdvancedConfigurationProcessed();
return runMinimalMemory;
}
public boolean isTransientTjpFields() {
ensureAdvancedConfigurationProcessed();
return transientTjpFields;
}
public boolean isRunMinimalMemorySet() {
ensureAdvancedConfigurationProcessed();
return runMinimalMemorySet;
}
public boolean shouldFastPackMethods() {
ensureAdvancedConfigurationProcessed();
return fastMethodPacking;
}
public boolean shouldPipelineCompilation() {
ensureAdvancedConfigurationProcessed();
return shouldPipelineCompilation;
}
public boolean shouldGenerateStackMaps() {
ensureAdvancedConfigurationProcessed();
return shouldGenerateStackMaps;
}
public void setIncrementalCompileCouldFollow(boolean b) {
incrementalCompileCouldFollow = b;
}
public boolean couldIncrementalCompileFollow() {
return incrementalCompileCouldFollow;
}
public void setSynchronizationPointcutsInUse() {
if (trace.isTraceEnabled()) {
trace.enter("setSynchronizationPointcutsInUse", this);
}
synchronizationPointcutsInUse = true;
if (trace.isTraceEnabled()) {
trace.exit("setSynchronizationPointcutsInUse");
}
}
public boolean areSynchronizationPointcutsInUse() {
return synchronizationPointcutsInUse;
}
/**
* Register a new pointcut designator handler with the world - this can be used by any pointcut parsers attached to the world.
*
* @param designatorHandler handler for the new pointcut
*/
public void registerPointcutHandler(PointcutDesignatorHandler designatorHandler) {
if (pointcutDesignators == null) {
pointcutDesignators = new HashSet<PointcutDesignatorHandler>();
}
pointcutDesignators.add(designatorHandler);
}
public Set<PointcutDesignatorHandler> getRegisteredPointcutHandlers() {
if (pointcutDesignators == null) {
return Collections.emptySet();
}
return pointcutDesignators;
}
public void reportMatch(ShadowMunger munger, Shadow shadow) {
}
public boolean isOverWeaving() {
return overWeaving;
}
public void reportCheckerMatch(Checker checker, Shadow shadow) {
}
/**
* @return true if this world has the activation and scope of application of the aspects controlled via aop.xml files
*/
public boolean isXmlConfigured() {
return false;
}
public boolean isAspectIncluded(ResolvedType aspectType) {
return true;
}
/**
* Determine if the named aspect requires a particular type around in order to be useful. The type is named in the aop.xml file
* against the aspect.
*
* @return true if there is a type missing that this aspect really needed around
*/
public boolean hasUnsatisfiedDependency(ResolvedType aspectType) {
return false;
}
public TypePattern getAspectScope(ResolvedType declaringType) {
return null;
}
public Map<String, ResolvedType> getFixed() {
return typeMap.tMap;
}
public Map<String, Reference<ResolvedType>> getExpendable() {
return typeMap.expendableMap;
}
/**
* Ask the type map to demote any types it can - we don't want them anchored forever.
*/
public void demote() {
typeMap.demote();
}
// protected boolean isExpendable(ResolvedType type) {
// if (type.equals(UnresolvedType.OBJECT))
// return false;
// if (type == null)
// return false;
// boolean isExposed = type.isExposedToWeaver();
// boolean nullDele = (type instanceof ReferenceType) ? ((ReferenceType) type).getDelegate() != null : true;
// if (isExposed || !isExposed && nullDele)
// return false;
// return !type.isPrimitiveType();
// }
/**
* Reference types we don't intend to weave may be ejected from the cache if we need the space.
*/
protected boolean isExpendable(ResolvedType type) {
return !type.equals(UnresolvedType.OBJECT) && !type.isExposedToWeaver() && !type.isPrimitiveType()
&& !type.isPrimitiveArray();
}
// map from aspect > excluded types
// memory issue here?
private Map<ResolvedType, Set<ResolvedType>> exclusionMap = new HashMap<ResolvedType, Set<ResolvedType>>();
public Map<ResolvedType, Set<ResolvedType>> getExclusionMap() {
return exclusionMap;
}
private TimeCollector timeCollector = null;
/**
* Record the time spent matching a pointcut - this will accumulate over the lifetime of this world/weaver and be reported every
* 25000 join points.
*/
public void record(Pointcut pointcut, long timetaken) {
if (timeCollector == null) {
ensureAdvancedConfigurationProcessed();
timeCollector = new TimeCollector(this);
}
timeCollector.record(pointcut, timetaken);
}
/**
* Record the time spent fastmatching a pointcut - this will accumulate over the lifetime of this world/weaver and be reported
* every 250 types.
*/
public void recordFastMatch(Pointcut pointcut, long timetaken) {
if (timeCollector == null) {
ensureAdvancedConfigurationProcessed();
timeCollector = new TimeCollector(this);
}
timeCollector.recordFastMatch(pointcut, timetaken);
}
public void reportTimers() {
if (timeCollector != null && !timingPeriodically) {
timeCollector.report();
timeCollector = new TimeCollector(this);
}
}
private static class TimeCollector {
private World world;
long joinpointCount;
long typeCount;
long perJoinpointCount;
long perTypes;
Map<String, Long> joinpointsPerPointcut = new HashMap<String, Long>();
Map<String, Long> timePerPointcut = new HashMap<String, Long>();
Map<String, Long> fastMatchTimesPerPointcut = new HashMap<String, Long>();
Map<String, Long> fastMatchTypesPerPointcut = new HashMap<String, Long>();
TimeCollector(World world) {
this.perJoinpointCount = world.timersPerJoinpoint;
this.perTypes = world.timersPerType;
this.world = world;
this.joinpointCount = 0;
this.typeCount = 0;
this.joinpointsPerPointcut = new HashMap<String, Long>();
this.timePerPointcut = new HashMap<String, Long>();
}
public void report() {
long totalTime = 0L;
for (String p : joinpointsPerPointcut.keySet()) {
totalTime += timePerPointcut.get(p);
}
world.getMessageHandler().handleMessage(
MessageUtil.info("Pointcut matching cost (total=" + (totalTime / 1000000) + "ms for " + joinpointCount
+ " joinpoint match calls):"));
for (String p : joinpointsPerPointcut.keySet()) {
StringBuffer sb = new StringBuffer();
sb.append("Time:" + (timePerPointcut.get(p) / 1000000) + "ms (jps:#" + joinpointsPerPointcut.get(p)
+ ") matching against " + p);
world.getMessageHandler().handleMessage(MessageUtil.info(sb.toString()));
}
world.getMessageHandler().handleMessage(MessageUtil.info("---"));
totalTime = 0L;
for (String p : fastMatchTimesPerPointcut.keySet()) {
totalTime += fastMatchTimesPerPointcut.get(p);
}
world.getMessageHandler().handleMessage(
MessageUtil.info("Pointcut fast matching cost (total=" + (totalTime / 1000000) + "ms for " + typeCount
+ " fast match calls):"));
for (String p : fastMatchTimesPerPointcut.keySet()) {
StringBuffer sb = new StringBuffer();
sb.append("Time:" + (fastMatchTimesPerPointcut.get(p) / 1000000) + "ms (types:#" + fastMatchTypesPerPointcut.get(p)
+ ") fast matching against " + p);
world.getMessageHandler().handleMessage(MessageUtil.info(sb.toString()));
}
world.getMessageHandler().handleMessage(MessageUtil.info("---"));
}
void record(Pointcut pointcut, long timetakenInNs) {
joinpointCount++;
String pointcutText = pointcut.toString();
Long jpcounter = joinpointsPerPointcut.get(pointcutText);
if (jpcounter == null) {
jpcounter = 1L;
} else {
jpcounter++;
}
joinpointsPerPointcut.put(pointcutText, jpcounter);
Long time = timePerPointcut.get(pointcutText);
if (time == null) {
time = timetakenInNs;
} else {
time += timetakenInNs;
}
timePerPointcut.put(pointcutText, time);
if (world.timingPeriodically) {
if ((joinpointCount % perJoinpointCount) == 0) {
long totalTime = 0L;
for (String p : joinpointsPerPointcut.keySet()) {
totalTime += timePerPointcut.get(p);
}
world.getMessageHandler().handleMessage(
MessageUtil.info("Pointcut matching cost (total=" + (totalTime / 1000000) + "ms for " + joinpointCount
+ " joinpoint match calls):"));
for (String p : joinpointsPerPointcut.keySet()) {
StringBuffer sb = new StringBuffer();
sb.append("Time:" + (timePerPointcut.get(p) / 1000000) + "ms (jps:#" + joinpointsPerPointcut.get(p)
+ ") matching against " + p);
world.getMessageHandler().handleMessage(MessageUtil.info(sb.toString()));
}
world.getMessageHandler().handleMessage(MessageUtil.info("---"));
}
}
}
void recordFastMatch(Pointcut pointcut, long timetakenInNs) {
typeCount++;
String pointcutText = pointcut.toString();
Long typecounter = fastMatchTypesPerPointcut.get(pointcutText);
if (typecounter == null) {
typecounter = 1L;
} else {
typecounter++;
}
fastMatchTypesPerPointcut.put(pointcutText, typecounter);
Long time = fastMatchTimesPerPointcut.get(pointcutText);
if (time == null) {
time = timetakenInNs;
} else {
time += timetakenInNs;
}
fastMatchTimesPerPointcut.put(pointcutText, time);
if (world.timingPeriodically) {
if ((typeCount % perTypes) == 0) {
long totalTime = 0L;
for (String p : fastMatchTimesPerPointcut.keySet()) {
totalTime += fastMatchTimesPerPointcut.get(p);
}
world.getMessageHandler().handleMessage(
MessageUtil.info("Pointcut fast matching cost (total=" + (totalTime / 1000000) + "ms for " + typeCount
+ " fast match calls):"));
for (String p : fastMatchTimesPerPointcut.keySet()) {
StringBuffer sb = new StringBuffer();
sb.append("Time:" + (fastMatchTimesPerPointcut.get(p) / 1000000) + "ms (types:#"
+ fastMatchTypesPerPointcut.get(p) + ") fast matching against " + p);
world.getMessageHandler().handleMessage(MessageUtil.info(sb.toString()));
}
world.getMessageHandler().handleMessage(MessageUtil.info("---"));
}
}
}
}
public TypeMap getTypeMap() {
return typeMap;
}
public static void reset() {
// ResolvedType.resetPrimitives();
}
/**
* Returns the version of ITD that this world wants to create. The default is the new style (2) but in some cases where there
* might be a clash, the old style can be used. It is set through the option -Xset:itdVersion=1
*
* @return the ITD version this world wants to create - 1=oldstyle 2=new, transparent style
*/
public int getItdVersion() {
return itdVersion;
}
// if not loadtime weaving then we are compile time weaving or post-compile time weaving
public abstract boolean isLoadtimeWeaving();
public void classWriteEvent(char[][] compoundName) {
// override if interested in write events
}
}