blob: b8baf0e2f4f4c71ebfecf1004534c6a6d43edc74 [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 2007, 2015 Oracle. All rights reserved.
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License v1.0, which accompanies this distribution
* and is available at http://www.eclipse.org/legal/epl-v10.html.
*
* Contributors:
* Oracle - initial API and implementation
******************************************************************************/
package org.eclipse.jpt.common.utility.internal.stack;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.EmptyStackException;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.eclipse.jpt.common.utility.command.Command;
import org.eclipse.jpt.common.utility.internal.collection.MapTools;
import org.eclipse.jpt.common.utility.queue.Queue;
import org.eclipse.jpt.common.utility.stack.Stack;
import org.eclipse.jpt.common.utility.transformer.Transformer;
/**
* Thread-safe implementation of the {@link Stack} interface.
* This also provides protocol for suspending a thread until the
* stack is empty or not empty, with optional time-outs.
* @param <E> the type of elements maintained by the stack
* @see StackTools
*/
public class SynchronizedStack<E>
implements Stack<E>, Serializable
{
/** Backing stack. */
private final Stack<E> stack;
/** Object to synchronize on. */
private final Object mutex;
private static final long serialVersionUID = 1L;
// ********** constructors **********
/**
* Construct a synchronized stack that wraps the
* specified stack and locks on the specified mutex.
*/
public SynchronizedStack(Stack<E> stack, Object mutex) {
super();
if ((stack == null) || (mutex == null)) {
throw new NullPointerException();
}
this.stack = stack;
this.mutex = mutex;
}
/**
* Construct a synchronized stack that wraps the
* specified stack and locks on itself.
*/
public SynchronizedStack(Stack<E> stack) {
super();
if (stack == null) {
throw new NullPointerException();
}
this.stack = stack;
this.mutex = this;
}
// ********** Stack implementation **********
public void push(E element) {
synchronized (this.mutex) {
this.push_(element);
}
}
/**
* Pre-condition: synchronized
*/
private void push_(E element) {
this.stack.push(element);
this.mutex.notifyAll();
}
public E pop() {
synchronized (this.mutex) {
return this.pop_();
}
}
/**
* Pre-condition: synchronized
*/
private E pop_() {
E o = this.stack.pop();
this.mutex.notifyAll();
return o;
}
public E peek() {
synchronized (this.mutex) {
return this.stack.peek();
}
}
public boolean isEmpty() {
synchronized (this.mutex) {
return this.stack.isEmpty();
}
}
// ********** indefinite waits **********
/**
* Suspend the current thread until the stack's empty status changes
* to the specified value.
*/
public void waitUntilEmptyIs(boolean empty) throws InterruptedException {
synchronized (this.mutex) {
this.waitUntilEmptyIs_(empty);
}
}
/**
* Pre-condition: synchronized
*/
private void waitUntilEmptyIs_(boolean empty) throws InterruptedException {
while (this.stack.isEmpty() != empty) {
this.mutex.wait();
}
}
/**
* Suspend the current thread until the stack is empty.
*/
public void waitUntilEmpty() throws InterruptedException {
this.waitUntilEmptyIs(true);
}
/**
* Suspend the current thread until the stack has something on it.
*/
public void waitUntilNotEmpty() throws InterruptedException {
this.waitUntilEmptyIs(false);
}
/**
* Suspend the current thread until the stack is empty,
* then "push" the specified item on to the top of the stack
* and continue executing.
*/
public void waitToPush(E element) throws InterruptedException {
synchronized (this.mutex) {
this.waitUntilEmptyIs_(true);
this.push_(element);
}
}
/**
* Suspend the current thread until the stack has something on it,
* then "pop" an item from the top of the stack and return it.
*/
public Object waitToPop() throws InterruptedException {
synchronized (this.mutex) {
this.waitUntilEmptyIs_(false);
return this.pop_();
}
}
// ********** timed waits **********
/**
* Suspend the current thread until the stack's empty status changes
* to the specified value or the specified time-out occurs.
* The time-out is specified in milliseconds. Return <code>true</code> if the specified
* empty status was achieved; return <code>false</code> if a time-out occurred.
* If the stack's empty status is already the specified value,
* return <code>true</code> immediately.
* If the time-out is zero, wait indefinitely.
*/
public boolean waitUntilEmptyIs(boolean empty, long timeout) throws InterruptedException {
synchronized (this.mutex) {
return this.waitUntilEmptyIs_(empty, timeout);
}
}
/**
* Pre-condition: synchronized
*/
private boolean waitUntilEmptyIs_(boolean empty, long timeout) throws InterruptedException {
if (timeout == 0L) {
this.waitUntilEmptyIs_(empty); // wait indefinitely until notified
return true; // if it ever comes back, the condition was met
}
long stop = System.currentTimeMillis() + timeout;
long remaining = timeout;
while ((this.stack.isEmpty() != empty) && (remaining > 0L)) {
this.mutex.wait(remaining);
remaining = stop - System.currentTimeMillis();
}
return (this.stack.isEmpty() == empty);
}
/**
* Suspend the current thread until the stack is empty
* or the specified time-out occurs.
* The time-out is specified in milliseconds. Return <code>true</code> if
* the stack is empty; return <code>false</code> if a time-out occurred.
* If the stack is already empty, return <code>true</code> immediately.
* If the time-out is zero, wait indefinitely.
*/
public boolean waitUntilEmpty(long timeout) throws InterruptedException {
return this.waitUntilEmptyIs(true, timeout);
}
/**
* Suspend the current thread until the stack has something on it.
* or the specified time-out occurs.
* The time-out is specified in milliseconds. Return <code>true</code> if
* the stack is not empty; return <code>false</code> if a time-out occurred.
* If the stack already has something on it, return <code>true</code> immediately.
* If the time-out is zero, wait indefinitely.
*/
public boolean waitUntilNotEmpty(long timeout) throws InterruptedException {
return this.waitUntilEmptyIs(false, timeout);
}
/**
* Suspend the current thread until the stack is empty,
* then "push" the specified item on to the top of the stack
* and continue executing. If the stack is not emptied out
* before the time-out, simply continue executing without
* "pushing" the item.
* The time-out is specified in milliseconds. Return <code>true</code> if the
* item was pushed; return <code>false</code> if a time-out occurred.
* If the stack is already empty, "push" the specified item and
* return <code>true</code> immediately.
* If the time-out is zero, wait indefinitely.
*/
public boolean waitToPush(E element, long timeout) throws InterruptedException {
synchronized (this.mutex) {
boolean success = this.waitUntilEmptyIs_(true, timeout);
if (success) {
this.push_(element);
}
return success;
}
}
/**
* Suspend the current thread until the stack has something on it,
* then "pop" an item from the top of the stack and return it.
* If the stack is empty and nothing is "pushed" on to it before the
* time-out, throw an empty stack exception.
* The time-out is specified in milliseconds.
* If the stack is not empty, "pop" an item and
* return it immediately.
* If the time-out is zero, wait indefinitely.
*/
public Object waitToPop(long timeout) throws InterruptedException {
synchronized (this.mutex) {
boolean success = this.waitUntilEmptyIs_(false, timeout);
if (success) {
return this.pop_();
}
throw new EmptyStackException();
}
}
// ********** synchronized behavior **********
/**
* If the current thread is not interrupted, execute the specified command
* with the mutex locked. This is useful for initializing the stack in another
* thread.
*/
public void execute(Command command) throws InterruptedException {
if (Thread.currentThread().isInterrupted()) {
throw new InterruptedException();
}
synchronized (this.mutex) {
command.execute();
}
}
// ********** additional (synchronized) public protocol **********
/**
* "Push" all the elements returned by the specified iterable.
* Return whether the stack changed as a result.
*/
public boolean pushAll(Iterable<? extends E> iterable) {
return this.pushAll(iterable.iterator());
}
/**
* "Push" all the elements returned by the specified iterator.
* Return whether the stack changed as a result.
*/
public boolean pushAll(Iterator<? extends E> iterator) {
if ( ! iterator.hasNext()) {
return false;
}
synchronized (this.mutex) {
return this.pushAll_(iterator);
}
}
/**
* Pre-condition: synchronized
* Assume the iterator is not empty.
*/
private boolean pushAll_(Iterator<? extends E> iterator) {
do {
this.stack.push(iterator.next());
} while (iterator.hasNext());
this.mutex.notifyAll();
return true;
}
/**
* "Push" all the elements in the specified array.
* Return whether the stack changed as a result.
*/
public boolean pushAll(E... array) {
int len = array.length;
if (len == 0) {
return false;
}
synchronized (this.mutex) {
return this.pushAll_(array, len);
}
}
/**
* Pre-condition: synchronized
* Assume the array is not empty.
*/
private boolean pushAll_(E[] array, int arrayLength) {
int i = 0;
do {
this.stack.push(array[i++]);
} while (i < arrayLength);
this.mutex.notifyAll();
return true;
}
/**
* "Pop" all the elements from the specified stack and "push" them.
* Return whether the stack changed as a result.
*/
public boolean pushAll(Stack<? extends E> s) {
if (s.isEmpty()) {
return false;
}
synchronized (this.mutex) {
return this.pushAll_(s);
}
}
/**
* Pre-condition: synchronized
* Assume the stack is not empty.
*/
private boolean pushAll_(Stack<? extends E> s) {
do {
this.stack.push(s.pop());
} while ( ! s.isEmpty());
this.mutex.notifyAll();
return true;
}
/**
* "Dequeue" all the elements from the specified queue and
* "push" them.
* Return whether the stack changed as a result.
* @see #popAllTo(Queue)
*/
public boolean pushAll(Queue<? extends E> queue) {
if (queue.isEmpty()) {
return false;
}
synchronized (this.mutex) {
return this.pushAll_(queue);
}
}
/**
* Pre-condition: synchronized
* Assume the queue is not empty.
*/
private boolean pushAll_(Queue<? extends E> queue) {
do {
this.stack.push(queue.dequeue());
} while ( ! queue.isEmpty());
this.mutex.notifyAll();
return true;
}
/**
* "Pop" all the current items from the stack and return them in a list.
*/
public ArrayList<E> popAll() {
ArrayList<E> result = new ArrayList<E>();
this.popAllTo(result);
return result;
}
/**
* "Pop" all the current items from the stack into specified collection.
* Return whether the stack changed as a result.
*/
public boolean popAllTo(Collection<? super E> collection) {
synchronized (this.mutex) {
return this.popAllTo_(collection);
}
}
/**
* Pre-condition: synchronized
*/
private boolean popAllTo_(Collection<? super E> collection) {
if (this.stack.isEmpty()) {
return false;
}
return this.popAllTo__(collection);
}
/**
* Pre-condition: synchronized
* Assume the stack is not empty.
*/
private boolean popAllTo__(Collection<? super E> collection) {
do {
collection.add(this.stack.pop());
} while ( ! this.stack.isEmpty());
this.mutex.notifyAll();
return true;
}
/**
* "Pop" all the current items from the stack into specified list
* at the specified index.
* Return whether the stack changed as a result.
*/
public boolean popAllTo(List<? super E> list, int index) {
synchronized (this.mutex) {
return this.popAllTo_(list, index);
}
}
/**
* Pre-condition: synchronized
*/
private boolean popAllTo_(List<? super E> list, int index) {
if (this.stack.isEmpty()) {
return false;
}
if (index == list.size()) {
return this.popAllTo__(list);
}
ArrayList<E> temp = new ArrayList<E>();
this.popAllTo__(temp);
list.addAll(index, temp);
return true;
}
/**
* "Pop" all the current items from the stack
* and "push" them onto the specified stack.
* Return whether the stack changed as a result.
*/
public boolean popAllTo(Stack<? super E> stack2) {
synchronized (this.mutex) {
return this.popAllTo_(stack2);
}
}
/**
* Pre-condition: synchronized
*/
public boolean popAllTo_(Stack<? super E> stack2) {
if (this.stack.isEmpty()) {
return false;
}
do {
stack2.push(this.stack.pop());
} while ( ! this.stack.isEmpty());
this.mutex.notifyAll();
return true;
}
/**
* "Pop" all the current items from the stack
* and "enqueue" them on the specified queue.
* Return whether the stack changed as a result.
* @see #pushAll(Queue)
*/
public boolean popAllTo(Queue<? super E> queue) {
synchronized (this.mutex) {
return this.popAllTo_(queue);
}
}
/**
* Pre-condition: synchronized
*/
public boolean popAllTo_(Queue<? super E> queue) {
if (this.stack.isEmpty()) {
return false;
}
do {
queue.enqueue(this.stack.pop());
} while ( ! this.stack.isEmpty());
this.mutex.notifyAll();
return true;
}
/**
* "Pop" all the current items from the stack
* and add them on the specified map, using the specified key transformer
* to generate the key for each item.
* Return whether the stack changed as a result.
*/
public <K> boolean popAllTo(Map<K, ? super E> map, Transformer<? super E, ? extends K> keyTransformer) {
synchronized (this.mutex) {
return this.popAllTo_(map, keyTransformer);
}
}
/**
* Pre-condition: synchronized
*/
private <K> boolean popAllTo_(Map<K, ? super E> map, Transformer<? super E, ? extends K> keyTransformer) {
if (this.stack.isEmpty()) {
return false;
}
do {
MapTools.add(map, this.stack.pop(), keyTransformer);
} while ( ! this.stack.isEmpty());
this.mutex.notifyAll();
return true;
}
/**
* "Pop" all the current items from the stack
* and add them on the specified map, using the specified key transformer
* to generate the key for each popped item and the specified value transformer
* to generator the value for each popped item.
* Return whether the stack changed as a result.
*/
public <K, V> boolean popAllTo(Map<K, V> map, Transformer<? super E, ? extends K> keyTransformer, Transformer<? super E, ? extends V> valueTransformer) {
synchronized (this.mutex) {
return this.popAllTo_(map, keyTransformer, valueTransformer);
}
}
/**
* Pre-condition: synchronized
*/
private <K, V> boolean popAllTo_(Map<K, V> map, Transformer<? super E, ? extends K> keyTransformer, Transformer<? super E, ? extends V> valueTransformer) {
if (this.stack.isEmpty()) {
return false;
}
do {
MapTools.add(map, this.stack.pop(), keyTransformer, valueTransformer);
} while ( ! this.stack.isEmpty());
this.mutex.notifyAll();
return true;
}
/**
* Return the object the stack locks on while performing
* its operations.
*/
public Object getMutex() {
return this.mutex;
}
// ********** standard methods **********
@Override
public String toString() {
synchronized (this.mutex) {
return this.stack.toString();
}
}
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
synchronized (this.mutex) {
s.defaultWriteObject();
}
}
}