| <?xml version="1.0" encoding="UTF-8"?> |
| <org.eclipse.epf.uma:ContentDescription xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:org.eclipse.epf.uma="http://www.eclipse.org/epf/uma/1.0.6/uma.ecore" xmlns:epf="http://www.eclipse.org/epf" epf:version="1.5.1" xmlns:rmc="http://www.ibm.com/rmc" rmc:version="7.5.1" xmi:id="-fZn4nTBQjy1YPY8BQSTvJg" name="new_guideline,_x_5XgH9iEd26h9j0X6pKmw" guid="-fZn4nTBQjy1YPY8BQSTvJg" changeDate="2008-09-10T11:05:45.000-0700" version="7.5.1"> |
| <mainDescription><p> |
| Criteria in rule is true or false. So when combining criteria together to build the condition part of a rule we need to |
| clearly understand the Boolean logic, and its operations. |
| </p> |
| <h5> |
| AND / Conjunction |
| </h5> |
| <p> |
| We will use the following notation the dot as operator for AND so A.B is equivalent to A&nbsp;AND B. The conjunction of |
| two propositions is true when both propositions are true. The truth table is |
| </p><br /> |
| <br /> |
| <table title="" cellspacing="0" cellpadding="2" width="85%" border="1"> |
| <tbody> |
| <tr> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>AND&nbsp;&nbsp;&nbsp; A</strong> |
| </p> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>B</strong> |
| </p> |
| </td> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>True</strong> |
| </p> |
| </td> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>False</strong> |
| </p> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>True</strong> |
| </p> |
| </td> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <em>True</em> |
| </p> |
| </td> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <em>False</em> |
| </p> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>False</strong> |
| </p> |
| </td> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <em>False</em> |
| </p> |
| </td> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <em>False</em> |
| </p> |
| </td> |
| </tr> |
| </tbody> |
| </table>&nbsp;<br /> |
| <br /> |
| <h5> |
| OR&nbsp; / Disjunction |
| </h5> |
| <p> |
| We use the + operator for A OR B like A + B. Disjunction of two propositions is false when both propositions are false. |
| </p> |
| <p> |
| <br /> |
| </p> |
| <table title="" cellspacing="0" cellpadding="2" width="85%" border="1"> |
| <tbody> |
| <tr> |
| <td> |
| <p> |
| <strong>OR&nbsp;&nbsp; A</strong> |
| </p> |
| <p> |
| <strong>B</strong> |
| </p> |
| </td> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>True</strong> |
| </p> |
| </td> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>False</strong> |
| </p> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>True</strong> |
| </p> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <p dir="ltr" style="MARGIN-RIGHT: 0px"> |
| <strong>False</strong> |
| </p> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| <td> |
| <em>False</em> |
| </td> |
| </tr> |
| </tbody> |
| </table><br /> |
| <br /> |
| <h5> |
| NOT / Negation |
| </h5> |
| <table title="" cellspacing="0" cellpadding="2" width="85%" border="1"> |
| <tbody> |
| <tr> |
| <td> |
| <strong>A</strong> |
| </td> |
| <td> |
| <strong>NOT A</strong> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <strong>True</strong> |
| </td> |
| <td> |
| <em>False</em> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <strong>False</strong> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| </tr> |
| </tbody> |
| </table><br /> |
| <br /> |
| <h5> |
| Implication |
| </h5> |
| <p> |
| A-&gt; B, implication is a binary operation which is false when A is true and&nbsp;B is false. A -&gt; B can be |
| expressed as NOT A OR B. |
| </p> |
| <p> |
| <br /> |
| </p> |
| <table title="" cellspacing="0" cellpadding="2" width="85%" border="1"> |
| <tbody> |
| <tr> |
| <td> |
| <p> |
| <strong>A -&gt; |
| B&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |
| A</strong> |
| </p> |
| <p> |
| <strong>B</strong> |
| </p> |
| </td> |
| <td> |
| <strong>True</strong> |
| </td> |
| <td> |
| <strong>False</strong> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <strong>True</strong> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <strong>False</strong> |
| </td> |
| <td> |
| <em>False</em> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| </tr> |
| </tbody> |
| </table><br /> |
| <br /> |
| <h5> |
| XOR or exclusive OR |
| </h5> |
| <p> |
| Exclusive-or of two propositions is true just when exactly one of the propositions is true<br /> |
| <br /> |
| </p> |
| <table title="" cellspacing="0" cellpadding="2" width="85%" border="1"> |
| <tbody> |
| <tr> |
| <td> |
| <p> |
| <strong>XOR&nbsp;&nbsp;&nbsp; A</strong> |
| </p> |
| <p> |
| <strong>B</strong> |
| </p> |
| </td> |
| <td> |
| <strong>True</strong> |
| </td> |
| <td> |
| <strong>False</strong> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <strong>True</strong> |
| </td> |
| <td> |
| <em>False</em> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| </tr> |
| <tr> |
| <td> |
| <strong>False</strong> |
| </td> |
| <td> |
| <em>True</em> |
| </td> |
| <td> |
| <em>False</em> |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| <h5> |
| De Morgan's Law |
| </h5> |
| <p> |
| De Morgan's law are rules in formal logic relating pairs of dual logical operators in a systematic manner expressed in |
| terms of negation: |
| </p> |
| <p> |
| &nbsp; NOT (A AND B) = NOT A OR NOT B |
| </p> |
| <p> |
| &nbsp;&nbsp;NOT (A OR B) = NOT A AND NOT B<br /> |
| <br /> |
| It is important to leverage the De Morgan's law to improve rule writing during&nbsp;the rule transformation.<br /> |
| <br /> |
| &nbsp; |
| </p> |
| <p> |
| <br /> |
| &nbsp; |
| </p></mainDescription> |
| </org.eclipse.epf.uma:ContentDescription> |