blob: 4562dacf5408e61cee407770d5767d0f66ea296c [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 2000, 2005 IBM Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
*******************************************************************************/
package org.eclipse.jdt.internal.compiler.lookup;
import org.eclipse.jdt.core.compiler.CharOperation;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.classfmt.ClassFileConstants;
import org.eclipse.jdt.internal.compiler.codegen.CodeStream;
import org.eclipse.jdt.internal.compiler.problem.ProblemReporter;
public class BlockScope extends Scope {
// Local variable management
public LocalVariableBinding[] locals;
public int localIndex; // position for next variable
public int startIndex; // start position in this scope - for ordering scopes vs. variables
public int offset; // for variable allocation throughout scopes
public int maxOffset; // for variable allocation throughout scopes
// finally scopes must be shifted behind respective try&catch scope(s) so as to avoid
// collisions of secret variables (return address, save value).
public BlockScope[] shiftScopes;
public final static VariableBinding[] EmulationPathToImplicitThis = {};
public final static VariableBinding[] NoEnclosingInstanceInConstructorCall = {};
public final static VariableBinding[] NoEnclosingInstanceInStaticContext = {};
public Scope[] subscopes = new Scope[1]; // need access from code assist
public int subscopeCount = 0; // need access from code assist
// record the current case statement being processed (for entire switch case block).
public CaseStatement enclosingCase; // from 1.4 on, local types should not be accessed across switch case blocks (52221)
protected BlockScope(int kind, Scope parent) {
super(kind, parent);
}
public BlockScope(BlockScope parent) {
this(parent, true);
}
public BlockScope(BlockScope parent, boolean addToParentScope) {
this(BLOCK_SCOPE, parent);
locals = new LocalVariableBinding[5];
if (addToParentScope) parent.addSubscope(this);
this.startIndex = parent.localIndex;
}
public BlockScope(BlockScope parent, int variableCount) {
this(BLOCK_SCOPE, parent);
locals = new LocalVariableBinding[variableCount];
parent.addSubscope(this);
this.startIndex = parent.localIndex;
}
/* Create the class scope & binding for the anonymous type.
*/
public final void addAnonymousType(
TypeDeclaration anonymousType,
ReferenceBinding superBinding) {
ClassScope anonymousClassScope = new ClassScope(this, anonymousType);
anonymousClassScope.buildAnonymousTypeBinding(
enclosingSourceType(),
superBinding);
}
/* Create the class scope & binding for the local type.
*/
public final void addLocalType(TypeDeclaration localType) {
// check that the localType does not conflict with an enclosing type
ReferenceBinding type = enclosingSourceType();
do {
if (CharOperation.equals(type.sourceName, localType.name)) {
problemReporter().hidingEnclosingType(localType);
return;
}
type = type.enclosingType();
} while (type != null);
// check that the localType does not conflict with another sibling local type
Scope scope = this;
do {
if (((BlockScope) scope).findLocalType(localType.name) != null) {
problemReporter().duplicateNestedType(localType);
return;
}
} while ((scope = scope.parent) instanceof BlockScope);
ClassScope localTypeScope = new ClassScope(this, localType);
addSubscope(localTypeScope);
localTypeScope.buildLocalTypeBinding(enclosingSourceType());
}
/* Insert a local variable into a given scope, updating its position
* and checking there are not too many locals or arguments allocated.
*/
public final void addLocalVariable(LocalVariableBinding binding) {
checkAndSetModifiersForVariable(binding);
// insert local in scope
if (localIndex == locals.length)
System.arraycopy(
locals,
0,
(locals = new LocalVariableBinding[localIndex * 2]),
0,
localIndex);
locals[localIndex++] = binding;
// update local variable binding
binding.declaringScope = this;
binding.id = this.outerMostMethodScope().analysisIndex++;
// share the outermost method scope analysisIndex
}
public void addSubscope(Scope childScope) {
if (subscopeCount == subscopes.length)
System.arraycopy(
subscopes,
0,
(subscopes = new Scope[subscopeCount * 2]),
0,
subscopeCount);
subscopes[subscopeCount++] = childScope;
}
/* Answer true if the receiver is suitable for assigning final blank fields.
*
* in other words, it is inside an initializer, a constructor or a clinit
*/
public final boolean allowBlankFinalFieldAssignment(FieldBinding binding) {
if (enclosingSourceType() != binding.declaringClass)
return false;
MethodScope methodScope = methodScope();
if (methodScope.isStatic != binding.isStatic())
return false;
return methodScope.isInsideInitializer() // inside initializer
|| ((AbstractMethodDeclaration) methodScope.referenceContext)
.isInitializationMethod(); // inside constructor or clinit
}
String basicToString(int tab) {
String newLine = "\n"; //$NON-NLS-1$
for (int i = tab; --i >= 0;)
newLine += "\t"; //$NON-NLS-1$
String s = newLine + "--- Block Scope ---"; //$NON-NLS-1$
newLine += "\t"; //$NON-NLS-1$
s += newLine + "locals:"; //$NON-NLS-1$
for (int i = 0; i < localIndex; i++)
s += newLine + "\t" + locals[i].toString(); //$NON-NLS-1$
s += newLine + "startIndex = " + startIndex; //$NON-NLS-1$
return s;
}
private void checkAndSetModifiersForVariable(LocalVariableBinding varBinding) {
int modifiers = varBinding.modifiers;
if ((modifiers & AccAlternateModifierProblem) != 0 && varBinding.declaration != null){
problemReporter().duplicateModifierForVariable(varBinding.declaration, this instanceof MethodScope);
}
int realModifiers = modifiers & AccJustFlag;
int unexpectedModifiers = ~AccFinal;
if ((realModifiers & unexpectedModifiers) != 0 && varBinding.declaration != null){
problemReporter().illegalModifierForVariable(varBinding.declaration, this instanceof MethodScope);
}
varBinding.modifiers = modifiers;
}
/* Compute variable positions in scopes given an initial position offset
* ignoring unused local variables.
*
* No argument is expected here (ilocal is the first non-argument local of the outermost scope)
* Arguments are managed by the MethodScope method
*/
void computeLocalVariablePositions(int ilocal, int initOffset, CodeStream codeStream) {
this.offset = initOffset;
this.maxOffset = initOffset;
// local variable init
int maxLocals = this.localIndex;
boolean hasMoreVariables = ilocal < maxLocals;
// scope init
int iscope = 0, maxScopes = this.subscopeCount;
boolean hasMoreScopes = maxScopes > 0;
// iterate scopes and variables in parallel
while (hasMoreVariables || hasMoreScopes) {
if (hasMoreScopes
&& (!hasMoreVariables || (subscopes[iscope].startIndex() <= ilocal))) {
// consider subscope first
if (subscopes[iscope] instanceof BlockScope) {
BlockScope subscope = (BlockScope) subscopes[iscope];
int subOffset = subscope.shiftScopes == null ? this.offset : subscope.maxShiftedOffset();
subscope.computeLocalVariablePositions(0, subOffset, codeStream);
if (subscope.maxOffset > this.maxOffset)
this.maxOffset = subscope.maxOffset;
}
hasMoreScopes = ++iscope < maxScopes;
} else {
// consider variable first
LocalVariableBinding local = locals[ilocal]; // if no local at all, will be locals[ilocal]==null
// check if variable is actually used, and may force it to be preserved
boolean generateCurrentLocalVar = (local.useFlag == LocalVariableBinding.USED && !local.isConstantValue());
// do not report fake used variable
if (local.useFlag == LocalVariableBinding.UNUSED
&& (local.declaration != null) // unused (and non secret) local
&& ((local.declaration.bits & ASTNode.IsLocalDeclarationReachableMASK) != 0)) { // declaration is reachable
if (!(local.declaration instanceof Argument)) // do not report unused catch arguments
this.problemReporter().unusedLocalVariable(local.declaration);
}
// could be optimized out, but does need to preserve unread variables ?
if (!generateCurrentLocalVar) {
if (local.declaration != null && environment().options.preserveAllLocalVariables) {
generateCurrentLocalVar = true; // force it to be preserved in the generated code
local.useFlag = LocalVariableBinding.USED;
}
}
// allocate variable
if (generateCurrentLocalVar) {
if (local.declaration != null) {
codeStream.record(local); // record user-defined local variables for attribute generation
}
// assign variable position
local.resolvedPosition = this.offset;
if ((local.type == LongBinding) || (local.type == DoubleBinding)) {
this.offset += 2;
} else {
this.offset++;
}
if (this.offset > 0xFFFF) { // no more than 65535 words of locals
this.problemReporter().noMoreAvailableSpaceForLocal(
local,
local.declaration == null ? (ASTNode)this.methodScope().referenceContext : local.declaration);
}
} else {
local.resolvedPosition = -1; // not generated
}
hasMoreVariables = ++ilocal < maxLocals;
}
}
if (this.offset > this.maxOffset)
this.maxOffset = this.offset;
}
/*
* Record the suitable binding denoting a synthetic field or constructor argument,
* mapping to the actual outer local variable in the scope context.
* Note that this may not need any effect, in case the outer local variable does not
* need to be emulated and can directly be used as is (using its back pointer to its
* declaring scope).
*/
public void emulateOuterAccess(LocalVariableBinding outerLocalVariable) {
BlockScope outerVariableScope = outerLocalVariable.declaringScope;
if (outerVariableScope == null)
return; // no need to further emulate as already inserted (val$this$0)
MethodScope currentMethodScope = this.methodScope();
if (outerVariableScope.methodScope() != currentMethodScope) {
NestedTypeBinding currentType = (NestedTypeBinding) this.enclosingSourceType();
//do nothing for member types, pre emulation was performed already
if (!currentType.isLocalType()) {
return;
}
// must also add a synthetic field if we're not inside a constructor
if (!currentMethodScope.isInsideInitializerOrConstructor()) {
currentType.addSyntheticArgumentAndField(outerLocalVariable);
} else {
currentType.addSyntheticArgument(outerLocalVariable);
}
}
}
/* Note that it must never produce a direct access to the targetEnclosingType,
* but instead a field sequence (this$2.this$1.this$0) so as to handle such a test case:
*
* class XX {
* void foo() {
* class A {
* class B {
* class C {
* boolean foo() {
* return (Object) A.this == (Object) B.this;
* }
* }
* }
* }
* new A().new B().new C();
* }
* }
* where we only want to deal with ONE enclosing instance for C (could not figure out an A for C)
*/
public final ReferenceBinding findLocalType(char[] name) {
long compliance = environment().options.complianceLevel;
for (int i = 0, length = subscopeCount; i < length; i++) {
if (subscopes[i] instanceof ClassScope) {
LocalTypeBinding sourceType = (LocalTypeBinding)((ClassScope) subscopes[i]).referenceContext.binding;
// from 1.4 on, local types should not be accessed across switch case blocks (52221)
if (compliance >= ClassFileConstants.JDK1_4 && sourceType.enclosingCase != null) {
if (!this.isInsideCase(sourceType.enclosingCase)) {
continue;
}
}
if (CharOperation.equals(sourceType.sourceName(), name))
return sourceType;
}
}
return null;
}
public LocalVariableBinding findVariable(char[] variable) {
int varLength = variable.length;
for (int i = 0, length = locals.length; i < length; i++) {
LocalVariableBinding local = locals[i];
if (local == null)
return null;
if (local.name.length == varLength && CharOperation.equals(local.name, variable))
return local;
}
return null;
}
/* API
* flag is a mask of the following values VARIABLE (= FIELD or LOCAL), TYPE.
* Only bindings corresponding to the mask will be answered.
*
* if the VARIABLE mask is set then
* If the first name provided is a field (or local) then the field (or local) is answered
* Otherwise, package names and type names are consumed until a field is found.
* In this case, the field is answered.
*
* if the TYPE mask is set,
* package names and type names are consumed until the end of the input.
* Only if all of the input is consumed is the type answered
*
* All other conditions are errors, and a problem binding is returned.
*
* NOTE: If a problem binding is returned, senders should extract the compound name
* from the binding & not assume the problem applies to the entire compoundName.
*
* The VARIABLE mask has precedence over the TYPE mask.
*
* InvocationSite implements
* isSuperAccess(); this is used to determine if the discovered field is visible.
* setFieldIndex(int); this is used to record the number of names that were consumed.
*
* For example, getBinding({"foo","y","q", VARIABLE, site) will answer
* the binding for the field or local named "foo" (or an error binding if none exists).
* In addition, setFieldIndex(1) will be sent to the invocation site.
* If a type named "foo" exists, it will not be detected (and an error binding will be answered)
*
* IMPORTANT NOTE: This method is written under the assumption that compoundName is longer than length 1.
*/
public Binding getBinding(char[][] compoundName, int mask, InvocationSite invocationSite, boolean needResolve) {
Binding binding = getBinding(compoundName[0], mask | Binding.TYPE | Binding.PACKAGE, invocationSite, needResolve);
invocationSite.setFieldIndex(1);
if (binding instanceof VariableBinding) return binding;
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordSimpleReference(compoundName[0]);
if (!binding.isValidBinding()) return binding;
int length = compoundName.length;
int currentIndex = 1;
foundType : if (binding instanceof PackageBinding) {
PackageBinding packageBinding = (PackageBinding) binding;
while (currentIndex < length) {
unitScope.recordReference(packageBinding.compoundName, compoundName[currentIndex]);
binding = packageBinding.getTypeOrPackage(compoundName[currentIndex++]);
invocationSite.setFieldIndex(currentIndex);
if (binding == null) {
if (currentIndex == length) {
// must be a type if its the last name, otherwise we have no idea if its a package or type
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
NotFound);
}
return new ProblemBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
NotFound);
}
if (binding instanceof ReferenceBinding) {
if (!binding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
binding.problemId());
if (!((ReferenceBinding) binding).canBeSeenBy(this))
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
(ReferenceBinding) binding,
NotVisible);
break foundType;
}
packageBinding = (PackageBinding) binding;
}
// It is illegal to request a PACKAGE from this method.
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
NotFound);
}
// know binding is now a ReferenceBinding
while (currentIndex < length) {
ReferenceBinding typeBinding = (ReferenceBinding) binding;
char[] nextName = compoundName[currentIndex++];
invocationSite.setFieldIndex(currentIndex);
invocationSite.setActualReceiverType(typeBinding);
if ((mask & Binding.FIELD) != 0 && (binding = findField(typeBinding, nextName, invocationSite, true /*resolve*/)) != null) {
if (!binding.isValidBinding())
return new ProblemFieldBinding(
((FieldBinding) binding).declaringClass,
CharOperation.subarray(compoundName, 0, currentIndex),
binding.problemId());
break; // binding is now a field
}
if ((binding = findMemberType(nextName, typeBinding)) == null) {
if ((mask & Binding.FIELD) != 0) {
return new ProblemBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
typeBinding,
NotFound);
}
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
typeBinding,
NotFound);
}
if (!binding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
binding.problemId());
}
if ((mask & Binding.FIELD) != 0 && (binding instanceof FieldBinding)) {
// was looking for a field and found a field
FieldBinding field = (FieldBinding) binding;
if (!field.isStatic())
return new ProblemFieldBinding(
field.declaringClass,
CharOperation.subarray(compoundName, 0, currentIndex),
NonStaticReferenceInStaticContext);
return binding;
}
if ((mask & Binding.TYPE) != 0 && (binding instanceof ReferenceBinding)) {
// was looking for a type and found a type
return binding;
}
// handle the case when a field or type was asked for but we resolved the compoundName to a type or field
return new ProblemBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
NotFound);
}
// Added for code assist... NOT Public API
public final Binding getBinding(
char[][] compoundName,
InvocationSite invocationSite) {
int currentIndex = 0;
int length = compoundName.length;
Binding binding =
getBinding(
compoundName[currentIndex++],
Binding.VARIABLE | Binding.TYPE | Binding.PACKAGE,
invocationSite,
true /*resolve*/);
if (!binding.isValidBinding())
return binding;
foundType : if (binding instanceof PackageBinding) {
while (currentIndex < length) {
PackageBinding packageBinding = (PackageBinding) binding;
binding = packageBinding.getTypeOrPackage(compoundName[currentIndex++]);
if (binding == null) {
if (currentIndex == length) {
// must be a type if its the last name, otherwise we have no idea if its a package or type
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
NotFound);
}
return new ProblemBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
NotFound);
}
if (binding instanceof ReferenceBinding) {
if (!binding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
binding.problemId());
if (!((ReferenceBinding) binding).canBeSeenBy(this))
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
(ReferenceBinding) binding,
NotVisible);
break foundType;
}
}
return binding;
}
foundField : if (binding instanceof ReferenceBinding) {
while (currentIndex < length) {
ReferenceBinding typeBinding = (ReferenceBinding) binding;
char[] nextName = compoundName[currentIndex++];
if ((binding = findField(typeBinding, nextName, invocationSite, true /*resolve*/)) != null) {
if (!binding.isValidBinding())
return new ProblemFieldBinding(
((FieldBinding) binding).declaringClass,
CharOperation.subarray(compoundName, 0, currentIndex),
binding.problemId());
if (!((FieldBinding) binding).isStatic())
return new ProblemFieldBinding(
((FieldBinding) binding).declaringClass,
CharOperation.subarray(compoundName, 0, currentIndex),
NonStaticReferenceInStaticContext);
break foundField; // binding is now a field
}
if ((binding = findMemberType(nextName, typeBinding)) == null)
return new ProblemBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
typeBinding,
NotFound);
if (!binding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
binding.problemId());
}
return binding;
}
VariableBinding variableBinding = (VariableBinding) binding;
while (currentIndex < length) {
TypeBinding typeBinding = variableBinding.type;
if (typeBinding == null)
return new ProblemFieldBinding(
null,
CharOperation.subarray(compoundName, 0, currentIndex + 1),
NotFound);
variableBinding =
findField(typeBinding, compoundName[currentIndex++], invocationSite, true /*resolve*/);
if (variableBinding == null)
return new ProblemFieldBinding(
null,
CharOperation.subarray(compoundName, 0, currentIndex),
NotFound);
if (!variableBinding.isValidBinding())
return variableBinding;
}
return variableBinding;
}
/*
* This retrieves the argument that maps to an enclosing instance of the suitable type,
* if not found then answers nil -- do not create one
*
* #implicitThis : the implicit this will be ok
* #((arg) this$n) : available as a constructor arg
* #((arg) this$n ... this$p) : available as as a constructor arg + a sequence of fields
* #((fieldDescr) this$n ... this$p) : available as a sequence of fields
* nil : not found
*
* Note that this algorithm should answer the shortest possible sequence when
* shortcuts are available:
* this$0 . this$0 . this$0
* instead of
* this$2 . this$1 . this$0 . this$1 . this$0
* thus the code generation will be more compact and runtime faster
*/
public VariableBinding[] getEmulationPath(LocalVariableBinding outerLocalVariable) {
MethodScope currentMethodScope = this.methodScope();
SourceTypeBinding sourceType = currentMethodScope.enclosingSourceType();
// identity check
BlockScope variableScope = outerLocalVariable.declaringScope;
if (variableScope == null /*val$this$0*/ || currentMethodScope == variableScope.methodScope()) {
return new VariableBinding[] { outerLocalVariable };
// implicit this is good enough
}
// use synthetic constructor arguments if possible
if (currentMethodScope.isInsideInitializerOrConstructor()
&& (sourceType.isNestedType())) {
SyntheticArgumentBinding syntheticArg;
if ((syntheticArg = ((NestedTypeBinding) sourceType).getSyntheticArgument(outerLocalVariable)) != null) {
return new VariableBinding[] { syntheticArg };
}
}
// use a synthetic field then
if (!currentMethodScope.isStatic) {
FieldBinding syntheticField;
if ((syntheticField = sourceType.getSyntheticField(outerLocalVariable)) != null) {
return new VariableBinding[] { syntheticField };
}
}
return null;
}
/*
* This retrieves the argument that maps to an enclosing instance of the suitable type,
* if not found then answers nil -- do not create one
*
* #implicitThis : the implicit this will be ok
* #((arg) this$n) : available as a constructor arg
* #((arg) this$n access$m... access$p) : available as as a constructor arg + a sequence of synthetic accessors to synthetic fields
* #((fieldDescr) this$n access#m... access$p) : available as a first synthetic field + a sequence of synthetic accessors to synthetic fields
* null : not found
* jls 15.9.2 + http://www.ergnosis.com/java-spec-report/java-language/jls-8.8.5.1-d.html
*/
public Object[] getEmulationPath(
ReferenceBinding targetEnclosingType,
boolean onlyExactMatch,
boolean denyEnclosingArgInConstructorCall) {
MethodScope currentMethodScope = this.methodScope();
SourceTypeBinding sourceType = currentMethodScope.enclosingSourceType();
// use 'this' if possible
if (!currentMethodScope.isStatic && !currentMethodScope.isConstructorCall) {
if (sourceType == targetEnclosingType || (!onlyExactMatch && sourceType.findSuperTypeErasingTo(targetEnclosingType) != null)) {
return EmulationPathToImplicitThis; // implicit this is good enough
}
}
if (!sourceType.isNestedType() || sourceType.isStatic()) { // no emulation from within non-inner types
if (currentMethodScope.isConstructorCall) {
return NoEnclosingInstanceInConstructorCall;
} else if (currentMethodScope.isStatic){
return NoEnclosingInstanceInStaticContext;
}
return null;
}
boolean insideConstructor = currentMethodScope.isInsideInitializerOrConstructor();
// use synthetic constructor arguments if possible
if (insideConstructor) {
SyntheticArgumentBinding syntheticArg;
if ((syntheticArg = ((NestedTypeBinding) sourceType).getSyntheticArgument(targetEnclosingType, onlyExactMatch)) != null) {
// reject allocation and super constructor call
if (denyEnclosingArgInConstructorCall
&& currentMethodScope.isConstructorCall
&& (sourceType == targetEnclosingType || (!onlyExactMatch && sourceType.findSuperTypeErasingTo(targetEnclosingType) != null))) {
return NoEnclosingInstanceInConstructorCall;
}
return new Object[] { syntheticArg };
}
}
// use a direct synthetic field then
if (currentMethodScope.isStatic) {
return NoEnclosingInstanceInStaticContext;
}
if (sourceType.isAnonymousType()) {
ReferenceBinding enclosingType = sourceType.enclosingType();
if (enclosingType.isNestedType()) {
NestedTypeBinding nestedEnclosingType = (NestedTypeBinding) enclosingType;
SyntheticArgumentBinding enclosingArgument = nestedEnclosingType.getSyntheticArgument(nestedEnclosingType.enclosingType(), onlyExactMatch);
if (enclosingArgument != null) {
FieldBinding syntheticField = sourceType.getSyntheticField(enclosingArgument);
if (syntheticField != null) {
if (syntheticField.type == targetEnclosingType || (!onlyExactMatch && ((ReferenceBinding)syntheticField.type).findSuperTypeErasingTo(targetEnclosingType) != null))
return new Object[] { syntheticField };
}
}
}
}
FieldBinding syntheticField = sourceType.getSyntheticField(targetEnclosingType, onlyExactMatch);
if (syntheticField != null) {
if (currentMethodScope.isConstructorCall){
return NoEnclosingInstanceInConstructorCall;
}
return new Object[] { syntheticField };
}
// could be reached through a sequence of enclosing instance link (nested members)
Object[] path = new Object[2]; // probably at least 2 of them
ReferenceBinding currentType = sourceType.enclosingType();
if (insideConstructor) {
path[0] = ((NestedTypeBinding) sourceType).getSyntheticArgument(currentType, onlyExactMatch);
} else {
if (currentMethodScope.isConstructorCall){
return NoEnclosingInstanceInConstructorCall;
}
path[0] = sourceType.getSyntheticField(currentType, onlyExactMatch);
}
if (path[0] != null) { // keep accumulating
int count = 1;
ReferenceBinding currentEnclosingType;
while ((currentEnclosingType = currentType.enclosingType()) != null) {
//done?
if (currentType == targetEnclosingType
|| (!onlyExactMatch && currentType.findSuperTypeErasingTo(targetEnclosingType) != null)) break;
if (currentMethodScope != null) {
currentMethodScope = currentMethodScope.enclosingMethodScope();
if (currentMethodScope != null && currentMethodScope.isConstructorCall){
return NoEnclosingInstanceInConstructorCall;
}
if (currentMethodScope != null && currentMethodScope.isStatic){
return NoEnclosingInstanceInStaticContext;
}
}
syntheticField = ((NestedTypeBinding) currentType).getSyntheticField(currentEnclosingType, onlyExactMatch);
if (syntheticField == null) break;
// append inside the path
if (count == path.length) {
System.arraycopy(path, 0, (path = new Object[count + 1]), 0, count);
}
// private access emulation is necessary since synthetic field is private
path[count++] = ((SourceTypeBinding) syntheticField.declaringClass).addSyntheticMethod(syntheticField, true);
currentType = currentEnclosingType;
}
if (currentType == targetEnclosingType
|| (!onlyExactMatch && currentType.findSuperTypeErasingTo(targetEnclosingType) != null)) {
return path;
}
}
return null;
}
/* Answer true if the variable name already exists within the receiver's scope.
*/
public final boolean isDuplicateLocalVariable(char[] name) {
BlockScope current = this;
while (true) {
for (int i = 0; i < localIndex; i++) {
if (CharOperation.equals(name, current.locals[i].name))
return true;
}
if (current.kind != BLOCK_SCOPE) return false;
current = (BlockScope)current.parent;
}
}
public int maxShiftedOffset() {
int max = -1;
if (this.shiftScopes != null){
for (int i = 0, length = this.shiftScopes.length; i < length; i++){
int subMaxOffset = this.shiftScopes[i].maxOffset;
if (subMaxOffset > max) max = subMaxOffset;
}
}
return max;
}
/* Answer the problem reporter to use for raising new problems.
*
* Note that as a side-effect, this updates the current reference context
* (unit, type or method) in case the problem handler decides it is necessary
* to abort.
*/
public ProblemReporter problemReporter() {
return outerMostMethodScope().problemReporter();
}
/*
* Code responsible to request some more emulation work inside the invocation type, so as to supply
* correct synthetic arguments to any allocation of the target type.
*/
public void propagateInnerEmulation(ReferenceBinding targetType, boolean isEnclosingInstanceSupplied) {
// no need to propagate enclosing instances, they got eagerly allocated already.
SyntheticArgumentBinding[] syntheticArguments;
if ((syntheticArguments = targetType.syntheticOuterLocalVariables()) != null) {
for (int i = 0, max = syntheticArguments.length; i < max; i++) {
SyntheticArgumentBinding syntheticArg = syntheticArguments[i];
// need to filter out the one that could match a supplied enclosing instance
if (!(isEnclosingInstanceSupplied
&& (syntheticArg.type == targetType.enclosingType()))) {
this.emulateOuterAccess(syntheticArg.actualOuterLocalVariable);
}
}
}
}
/* Answer the reference type of this scope.
*
* It is the nearest enclosing type of this scope.
*/
public TypeDeclaration referenceType() {
return methodScope().referenceType();
}
/*
* Answer the index of this scope relatively to its parent.
* For method scope, answers -1 (not a classScope relative position)
*/
public int scopeIndex() {
if (this instanceof MethodScope) return -1;
BlockScope parentScope = (BlockScope)parent;
Scope[] parentSubscopes = parentScope.subscopes;
for (int i = 0, max = parentScope.subscopeCount; i < max; i++) {
if (parentSubscopes[i] == this) return i;
}
return -1;
}
// start position in this scope - for ordering scopes vs. variables
int startIndex() {
return startIndex;
}
public String toString() {
return toString(0);
}
public String toString(int tab) {
String s = basicToString(tab);
for (int i = 0; i < subscopeCount; i++)
if (subscopes[i] instanceof BlockScope)
s += ((BlockScope) subscopes[i]).toString(tab + 1) + "\n"; //$NON-NLS-1$
return s;
}
}