blob: b24595d667823497b84b88ea1641480f91eae3c5 [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 2000, 2005 IBM Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
*******************************************************************************/
package org.eclipse.jdt.internal.compiler.lookup;
import org.eclipse.jdt.core.compiler.CharOperation;
import org.eclipse.jdt.internal.compiler.ast.ASTNode;
import org.eclipse.jdt.internal.compiler.ast.AbstractMethodDeclaration;
import org.eclipse.jdt.internal.compiler.ast.AbstractVariableDeclaration;
import org.eclipse.jdt.internal.compiler.ast.FieldDeclaration;
import org.eclipse.jdt.internal.compiler.ast.TypeDeclaration;
import org.eclipse.jdt.internal.compiler.ast.TypeParameter;
import org.eclipse.jdt.internal.compiler.ast.TypeReference;
import org.eclipse.jdt.internal.compiler.classfmt.ClassFileConstants;
import org.eclipse.jdt.internal.compiler.env.AccessRestriction;
import org.eclipse.jdt.internal.compiler.env.IGenericType;
import org.eclipse.jdt.internal.compiler.problem.AbortCompilation;
import org.eclipse.jdt.internal.compiler.problem.ProblemReporter;
import org.eclipse.jdt.internal.compiler.util.HashtableOfObject;
public class ClassScope extends Scope {
public TypeDeclaration referenceContext;
private TypeReference superTypeReference;
private final static char[] IncompleteHierarchy = new char[] {'h', 'a', 's', ' ', 'i', 'n', 'c', 'o', 'n', 's', 'i', 's', 't', 'e', 'n', 't', ' ', 'h', 'i', 'e', 'r', 'a', 'r', 'c', 'h', 'y'};
public ClassScope(Scope parent, TypeDeclaration context) {
super(CLASS_SCOPE, parent);
this.referenceContext = context;
}
void buildAnonymousTypeBinding(SourceTypeBinding enclosingType, ReferenceBinding supertype) {
LocalTypeBinding anonymousType = buildLocalType(enclosingType, enclosingType.fPackage);
SourceTypeBinding sourceType = referenceContext.binding;
if (supertype.isInterface()) {
sourceType.superclass = getJavaLangObject();
sourceType.superInterfaces = new ReferenceBinding[] { supertype };
} else {
sourceType.superclass = supertype;
sourceType.superInterfaces = TypeConstants.NoSuperInterfaces;
}
connectMemberTypes();
buildFieldsAndMethods();
anonymousType.faultInTypesForFieldsAndMethods();
sourceType.verifyMethods(environment().methodVerifier());
}
private void buildFields() {
boolean hierarchyIsInconsistent = referenceContext.binding.isHierarchyInconsistent();
if (referenceContext.fields == null) {
if (hierarchyIsInconsistent) { // 72468
referenceContext.binding.fields = new FieldBinding[1];
referenceContext.binding.fields[0] =
new FieldBinding(IncompleteHierarchy, IntBinding, AccPrivate, referenceContext.binding, null);
} else {
referenceContext.binding.fields = NoFields;
}
return;
}
// count the number of fields vs. initializers
FieldDeclaration[] fields = referenceContext.fields;
int size = fields.length;
int count = 0;
for (int i = 0; i < size; i++) {
switch (fields[i].getKind()) {
case AbstractVariableDeclaration.FIELD:
case AbstractVariableDeclaration.ENUM_CONSTANT:
count++;
}
}
if (hierarchyIsInconsistent)
count++;
// iterate the field declarations to create the bindings, lose all duplicates
FieldBinding[] fieldBindings = new FieldBinding[count];
HashtableOfObject knownFieldNames = new HashtableOfObject(count);
boolean duplicate = false;
count = 0;
for (int i = 0; i < size; i++) {
FieldDeclaration field = fields[i];
if (field.getKind() == AbstractVariableDeclaration.INITIALIZER) {
if (referenceContext.binding.isInterface())
problemReporter().interfaceCannotHaveInitializers(referenceContext.binding, field);
} else {
FieldBinding fieldBinding = new FieldBinding(field, null, field.modifiers | AccUnresolved, referenceContext.binding);
// field's type will be resolved when needed for top level types
checkAndSetModifiersForField(fieldBinding, field);
if (knownFieldNames.containsKey(field.name)) {
duplicate = true;
FieldBinding previousBinding = (FieldBinding) knownFieldNames.get(field.name);
if (previousBinding != null) {
for (int f = 0; f < i; f++) {
FieldDeclaration previousField = fields[f];
if (previousField.binding == previousBinding) {
problemReporter().duplicateFieldInType(referenceContext.binding, previousField);
previousField.binding = null;
break;
}
}
}
knownFieldNames.put(field.name, null); // ensure that the duplicate field is found & removed
problemReporter().duplicateFieldInType(referenceContext.binding, field);
field.binding = null;
} else {
knownFieldNames.put(field.name, fieldBinding);
// remember that we have seen a field with this name
if (fieldBinding != null)
fieldBindings[count++] = fieldBinding;
}
}
}
// remove duplicate fields
if (duplicate) {
FieldBinding[] newFieldBindings = new FieldBinding[fieldBindings.length];
// we know we'll be removing at least 1 duplicate name
size = count;
count = 0;
for (int i = 0; i < size; i++) {
FieldBinding fieldBinding = fieldBindings[i];
if (knownFieldNames.get(fieldBinding.name) != null)
newFieldBindings[count++] = fieldBinding;
}
fieldBindings = newFieldBindings;
}
if (hierarchyIsInconsistent)
fieldBindings[count++] = new FieldBinding(IncompleteHierarchy, IntBinding, AccPrivate, referenceContext.binding, null);
if (count != fieldBindings.length)
System.arraycopy(fieldBindings, 0, fieldBindings = new FieldBinding[count], 0, count);
for (int i = 0; i < count; i++)
fieldBindings[i].id = i;
referenceContext.binding.fields = fieldBindings;
}
void buildFieldsAndMethods() {
buildFields();
buildMethods();
SourceTypeBinding sourceType = referenceContext.binding;
if (sourceType.isMemberType() && !sourceType.isLocalType())
((MemberTypeBinding) sourceType).checkSyntheticArgsAndFields();
ReferenceBinding[] memberTypes = sourceType.memberTypes;
for (int i = 0, length = memberTypes.length; i < length; i++)
((SourceTypeBinding) memberTypes[i]).scope.buildFieldsAndMethods();
}
private LocalTypeBinding buildLocalType(
SourceTypeBinding enclosingType,
PackageBinding packageBinding) {
referenceContext.scope = this;
referenceContext.staticInitializerScope = new MethodScope(this, referenceContext, true);
referenceContext.initializerScope = new MethodScope(this, referenceContext, false);
// build the binding or the local type
LocalTypeBinding localType = new LocalTypeBinding(this, enclosingType, this.innermostSwitchCase());
referenceContext.binding = localType;
checkAndSetModifiers();
buildTypeVariables();
// Look at member types
ReferenceBinding[] memberTypeBindings = NoMemberTypes;
if (referenceContext.memberTypes != null) {
int size = referenceContext.memberTypes.length;
memberTypeBindings = new ReferenceBinding[size];
int count = 0;
nextMember : for (int i = 0; i < size; i++) {
TypeDeclaration memberContext = referenceContext.memberTypes[i];
if (memberContext.kind() == IGenericType.INTERFACE_DECL) {
problemReporter().nestedClassCannotDeclareInterface(memberContext);
continue nextMember;
}
ReferenceBinding type = localType;
// check that the member does not conflict with an enclosing type
do {
if (CharOperation.equals(type.sourceName, memberContext.name)) {
problemReporter().hidingEnclosingType(memberContext);
continue nextMember;
}
type = type.enclosingType();
} while (type != null);
// check the member type does not conflict with another sibling member type
for (int j = 0; j < i; j++) {
if (CharOperation.equals(referenceContext.memberTypes[j].name, memberContext.name)) {
problemReporter().duplicateNestedType(memberContext);
continue nextMember;
}
}
ClassScope memberScope = new ClassScope(this, referenceContext.memberTypes[i]);
LocalTypeBinding memberBinding = memberScope.buildLocalType(localType, packageBinding);
memberBinding.setAsMemberType();
memberTypeBindings[count++] = memberBinding;
}
if (count != size)
System.arraycopy(memberTypeBindings, 0, memberTypeBindings = new ReferenceBinding[count], 0, count);
}
localType.memberTypes = memberTypeBindings;
return localType;
}
void buildLocalTypeBinding(SourceTypeBinding enclosingType) {
LocalTypeBinding localType = buildLocalType(enclosingType, enclosingType.fPackage);
connectTypeHierarchy();
buildFieldsAndMethods();
localType.faultInTypesForFieldsAndMethods();
referenceContext.binding.verifyMethods(environment().methodVerifier());
}
private void buildMemberTypes(AccessRestriction accessRestriction) {
SourceTypeBinding sourceType = referenceContext.binding;
ReferenceBinding[] memberTypeBindings = NoMemberTypes;
if (referenceContext.memberTypes != null) {
int length = referenceContext.memberTypes.length;
memberTypeBindings = new ReferenceBinding[length];
int count = 0;
nextMember : for (int i = 0; i < length; i++) {
TypeDeclaration memberContext = referenceContext.memberTypes[i];
if (memberContext.kind() == IGenericType.INTERFACE_DECL
&& sourceType.isNestedType()
&& sourceType.isClass() // no need to check for enum, since implicitly static
&& !sourceType.isStatic()) {
problemReporter().nestedClassCannotDeclareInterface(memberContext);
continue nextMember;
}
ReferenceBinding type = sourceType;
// check that the member does not conflict with an enclosing type
do {
if (CharOperation.equals(type.sourceName, memberContext.name)) {
problemReporter().hidingEnclosingType(memberContext);
continue nextMember;
}
type = type.enclosingType();
} while (type != null);
// check that the member type does not conflict with another sibling member type
for (int j = 0; j < i; j++) {
if (CharOperation.equals(referenceContext.memberTypes[j].name, memberContext.name)) {
problemReporter().duplicateNestedType(memberContext);
continue nextMember;
}
}
ClassScope memberScope = new ClassScope(this, memberContext);
memberTypeBindings[count++] = memberScope.buildType(sourceType, sourceType.fPackage, accessRestriction);
}
if (count != length)
System.arraycopy(memberTypeBindings, 0, memberTypeBindings = new ReferenceBinding[count], 0, count);
}
sourceType.memberTypes = memberTypeBindings;
}
private void buildMethods() {
boolean isEnum = referenceContext.kind() == IGenericType.ENUM_DECL;
if (referenceContext.methods == null && !isEnum) {
referenceContext.binding.methods = NoMethods;
return;
}
// iterate the method declarations to create the bindings
AbstractMethodDeclaration[] methods = referenceContext.methods;
int size = methods == null ? 0 : methods.length;
// look for <clinit> method
int clinitIndex = -1;
for (int i = 0; i < size; i++) {
if (methods[i].isClinit()) {
clinitIndex = i;
break;
}
}
int count = isEnum ? 2 : 0; // reserve 2 slots for special enum methods: #values() and #valueOf(String)
MethodBinding[] methodBindings = new MethodBinding[(clinitIndex == -1 ? size : size - 1) + count];
// create special methods for enums
if (isEnum) {
SourceTypeBinding sourceType = referenceContext.binding;
methodBindings[0] = sourceType.addSyntheticEnumMethod(TypeConstants.VALUES); // add <EnumType>[] values()
methodBindings[1] = sourceType.addSyntheticEnumMethod(TypeConstants.VALUEOF); // add <EnumType> valueOf()
}
// create bindings for source methods
for (int i = 0; i < size; i++) {
if (i != clinitIndex) {
MethodScope scope = new MethodScope(this, methods[i], false);
MethodBinding methodBinding = scope.createMethod(methods[i]);
if (methodBinding != null) // is null if binding could not be created
methodBindings[count++] = methodBinding;
}
}
if (count != methodBindings.length)
System.arraycopy(methodBindings, 0, methodBindings = new MethodBinding[count], 0, count);
referenceContext.binding.methods = methodBindings;
}
SourceTypeBinding buildType(SourceTypeBinding enclosingType, PackageBinding packageBinding, AccessRestriction accessRestriction) {
// provide the typeDeclaration with needed scopes
referenceContext.scope = this;
referenceContext.staticInitializerScope = new MethodScope(this, referenceContext, true);
referenceContext.initializerScope = new MethodScope(this, referenceContext, false);
if (enclosingType == null) {
char[][] className = CharOperation.arrayConcat(packageBinding.compoundName, referenceContext.name);
referenceContext.binding = new SourceTypeBinding(className, packageBinding, this);
} else {
char[][] className = CharOperation.deepCopy(enclosingType.compoundName);
className[className.length - 1] =
CharOperation.concat(className[className.length - 1], referenceContext.name, '$');
referenceContext.binding = new MemberTypeBinding(className, this, enclosingType);
}
SourceTypeBinding sourceType = referenceContext.binding;
environment().setAccessRestriction(sourceType, accessRestriction);
sourceType.fPackage.addType(sourceType);
checkAndSetModifiers();
buildTypeVariables();
buildMemberTypes(accessRestriction);
return sourceType;
}
private void buildTypeVariables() {
SourceTypeBinding sourceType = referenceContext.binding;
TypeParameter[] typeParameters = referenceContext.typeParameters;
// do not construct type variables if source < 1.5
if (typeParameters == null || environment().options.sourceLevel < ClassFileConstants.JDK1_5) {
sourceType.typeVariables = NoTypeVariables;
return;
}
sourceType.typeVariables = NoTypeVariables; // safety
if (sourceType.id == T_JavaLangObject) { // handle the case of redefining java.lang.Object up front
problemReporter().objectCannotBeGeneric(referenceContext);
return;
}
sourceType.typeVariables = createTypeVariables(typeParameters, sourceType);
sourceType.modifiers |= AccGenericSignature;
}
private void checkAndSetModifiers() {
SourceTypeBinding sourceType = referenceContext.binding;
int modifiers = sourceType.modifiers;
if ((modifiers & AccAlternateModifierProblem) != 0)
problemReporter().duplicateModifierForType(sourceType);
ReferenceBinding enclosingType = sourceType.enclosingType();
boolean isMemberType = sourceType.isMemberType();
if (isMemberType) {
// checks for member types before local types to catch local members
if (enclosingType.isStrictfp())
modifiers |= AccStrictfp;
if (enclosingType.isInterface())
modifiers |= AccPublic;
if (sourceType.isEnum()) {
if (!enclosingType.isStatic())
problemReporter().nonStaticContextForEnumMemberType(sourceType);
else
modifiers |= AccStatic;
}
} else if (sourceType.isLocalType()) {
if (sourceType.isEnum()) {
problemReporter().illegalLocalTypeDeclaration(referenceContext);
sourceType.modifiers = 0;
return;
}
if (sourceType.isAnonymousType()) {
modifiers |= AccFinal;
// set AccEnum flag for anonymous body of enum constants
if (referenceContext.allocation.type == null)
modifiers |= AccEnum;
}
Scope scope = this;
do {
switch (scope.kind) {
case METHOD_SCOPE :
MethodScope methodScope = (MethodScope) scope;
if (methodScope.isInsideInitializer()) {
SourceTypeBinding type = ((TypeDeclaration) methodScope.referenceContext).binding;
// inside field declaration ? check field modifier to see if deprecated
if (methodScope.initializedField != null) {
// currently inside this field initialization
if (methodScope.initializedField.isViewedAsDeprecated() && !sourceType.isDeprecated())
modifiers |= AccDeprecatedImplicitly;
} else {
if (type.isStrictfp())
modifiers |= AccStrictfp;
if (type.isViewedAsDeprecated() && !sourceType.isDeprecated())
modifiers |= AccDeprecatedImplicitly;
}
} else {
MethodBinding method = ((AbstractMethodDeclaration) methodScope.referenceContext).binding;
if (method != null) {
if (method.isStrictfp())
modifiers |= AccStrictfp;
if (method.isViewedAsDeprecated() && !sourceType.isDeprecated())
modifiers |= AccDeprecatedImplicitly;
}
}
break;
case CLASS_SCOPE :
// local member
if (enclosingType.isStrictfp())
modifiers |= AccStrictfp;
if (enclosingType.isViewedAsDeprecated() && !sourceType.isDeprecated())
modifiers |= AccDeprecatedImplicitly;
break;
}
scope = scope.parent;
} while (scope != null);
}
// after this point, tests on the 16 bits reserved.
int realModifiers = modifiers & AccJustFlag;
if ((realModifiers & AccInterface) != 0) { // interface and annotation type
// detect abnormal cases for interfaces
if (isMemberType) {
int unexpectedModifiers =
~(AccPublic | AccPrivate | AccProtected | AccStatic | AccAbstract | AccInterface | AccStrictfp | AccAnnotation);
if ((realModifiers & unexpectedModifiers) != 0) {
if ((realModifiers & AccAnnotation) != 0)
problemReporter().illegalModifierForAnnotationMemberType(sourceType);
else
problemReporter().illegalModifierForMemberInterface(sourceType);
}
/*
} else if (sourceType.isLocalType()) { //interfaces cannot be defined inside a method
int unexpectedModifiers = ~(AccAbstract | AccInterface | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForLocalInterface(sourceType);
*/
} else {
int unexpectedModifiers = ~(AccPublic | AccAbstract | AccInterface | AccStrictfp | AccAnnotation);
if ((realModifiers & unexpectedModifiers) != 0) {
if ((realModifiers & AccAnnotation) != 0)
problemReporter().illegalModifierForAnnotationType(sourceType);
else
problemReporter().illegalModifierForInterface(sourceType);
}
}
modifiers |= AccAbstract;
} else if ((realModifiers & AccEnum) != 0) {
// detect abnormal cases for enums
if (isMemberType) { // includes member types defined inside local types
int unexpectedModifiers = ~(AccPublic | AccPrivate | AccProtected | AccStatic | AccStrictfp | AccEnum);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForMemberEnum(sourceType);
} else if (sourceType.isLocalType()) { // each enum constant is an anonymous local type
int unexpectedModifiers = ~(AccStrictfp | AccFinal | AccEnum); // add final since implicitly set for anonymous type
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForLocalEnum(sourceType);
} else {
int unexpectedModifiers = ~(AccPublic | AccStrictfp | AccEnum);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForEnum(sourceType);
}
// what about inherited interface methods?
if ((referenceContext.bits & ASTNode.HasAbstractMethods) != 0)
modifiers |= AccAbstract;
} else {
// detect abnormal cases for classes
if (isMemberType) { // includes member types defined inside local types
int unexpectedModifiers = ~(AccPublic | AccPrivate | AccProtected | AccStatic | AccAbstract | AccFinal | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForMemberClass(sourceType);
} else if (sourceType.isLocalType()) {
int unexpectedModifiers = ~(AccAbstract | AccFinal | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForLocalClass(sourceType);
} else {
int unexpectedModifiers = ~(AccPublic | AccAbstract | AccFinal | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForClass(sourceType);
}
// check that Final and Abstract are not set together
if ((realModifiers & (AccFinal | AccAbstract)) == (AccFinal | AccAbstract))
problemReporter().illegalModifierCombinationFinalAbstractForClass(sourceType);
}
if (isMemberType) {
// test visibility modifiers inconsistency, isolate the accessors bits
if (enclosingType.isInterface()) {
if ((realModifiers & (AccProtected | AccPrivate)) != 0) {
problemReporter().illegalVisibilityModifierForInterfaceMemberType(sourceType);
// need to keep the less restrictive
if ((realModifiers & AccProtected) != 0)
modifiers &= ~AccProtected;
if ((realModifiers & AccPrivate) != 0)
modifiers &= ~AccPrivate;
}
} else {
int accessorBits = realModifiers & (AccPublic | AccProtected | AccPrivate);
if ((accessorBits & (accessorBits - 1)) > 1) {
problemReporter().illegalVisibilityModifierCombinationForMemberType(sourceType);
// need to keep the less restrictive so disable Protected/Private as necessary
if ((accessorBits & AccPublic) != 0) {
if ((accessorBits & AccProtected) != 0)
modifiers &= ~AccProtected;
if ((accessorBits & AccPrivate) != 0)
modifiers &= ~AccPrivate;
} else if ((accessorBits & AccProtected) != 0 && (accessorBits & AccPrivate) != 0) {
modifiers &= ~AccPrivate;
}
}
}
// static modifier test
if ((realModifiers & AccStatic) == 0) {
if (enclosingType.isInterface())
modifiers |= AccStatic;
} else if (!enclosingType.isStatic()) {
// error the enclosing type of a static field must be static or a top-level type
problemReporter().illegalStaticModifierForMemberType(sourceType);
}
}
sourceType.modifiers = modifiers;
}
/* This method checks the modifiers of a field.
*
* 9.3 & 8.3
* Need to integrate the check for the final modifiers for nested types
*
* Note : A scope is accessible by : fieldBinding.declaringClass.scope
*/
private void checkAndSetModifiersForField(FieldBinding fieldBinding, FieldDeclaration fieldDecl) {
int modifiers = fieldBinding.modifiers;
final ReferenceBinding declaringClass = fieldBinding.declaringClass;
if ((modifiers & AccAlternateModifierProblem) != 0)
problemReporter().duplicateModifierForField(declaringClass, fieldDecl);
if (declaringClass.isInterface()) {
int expectedValue = AccPublic | AccStatic | AccFinal;
// set the modifiers
modifiers |= expectedValue;
// and then check that they are the only ones
if ((modifiers & AccJustFlag) != expectedValue) {
if ((declaringClass.modifiers & AccAnnotation) != 0)
problemReporter().illegalModifierForAnnotationField(fieldDecl);
else
problemReporter().illegalModifierForInterfaceField(fieldDecl);
}
fieldBinding.modifiers = modifiers;
return;
} else if (fieldDecl.getKind() == AbstractVariableDeclaration.ENUM_CONSTANT) {
// check that they are not modifiers in source
if ((modifiers & AccJustFlag) != 0)
problemReporter().illegalModifierForEnumConstant(declaringClass, fieldDecl);
// set the modifiers
int implicitValue = AccPublic | AccStatic | AccFinal | AccEnum;
fieldBinding.modifiers|= implicitValue;
return;
}
// after this point, tests on the 16 bits reserved.
int realModifiers = modifiers & AccJustFlag;
int unexpectedModifiers = ~(AccPublic | AccPrivate | AccProtected | AccFinal | AccStatic | AccTransient | AccVolatile);
if ((realModifiers & unexpectedModifiers) != 0) {
problemReporter().illegalModifierForField(declaringClass, fieldDecl);
modifiers &= ~AccJustFlag | ~unexpectedModifiers;
}
int accessorBits = realModifiers & (AccPublic | AccProtected | AccPrivate);
if ((accessorBits & (accessorBits - 1)) > 1) {
problemReporter().illegalVisibilityModifierCombinationForField(declaringClass, fieldDecl);
// need to keep the less restrictive so disable Protected/Private as necessary
if ((accessorBits & AccPublic) != 0) {
if ((accessorBits & AccProtected) != 0)
modifiers &= ~AccProtected;
if ((accessorBits & AccPrivate) != 0)
modifiers &= ~AccPrivate;
} else if ((accessorBits & AccProtected) != 0 && (accessorBits & AccPrivate) != 0) {
modifiers &= ~AccPrivate;
}
}
if ((realModifiers & (AccFinal | AccVolatile)) == (AccFinal | AccVolatile))
problemReporter().illegalModifierCombinationFinalVolatileForField(declaringClass, fieldDecl);
if (fieldDecl.initialization == null && (modifiers & AccFinal) != 0)
modifiers |= AccBlankFinal;
fieldBinding.modifiers = modifiers;
}
private void checkForInheritedMemberTypes(SourceTypeBinding sourceType) {
// search up the hierarchy of the sourceType to see if any superType defines a member type
// when no member types are defined, tag the sourceType & each superType with the HasNoMemberTypes bit
// assumes super types have already been checked & tagged
ReferenceBinding currentType = sourceType;
ReferenceBinding[][] interfacesToVisit = null;
int lastPosition = -1;
do {
if (currentType.hasMemberTypes()) // avoid resolving member types eagerly
return;
ReferenceBinding[] itsInterfaces = currentType.superInterfaces();
if (itsInterfaces != NoSuperInterfaces) {
if (interfacesToVisit == null)
interfacesToVisit = new ReferenceBinding[5][];
if (++lastPosition == interfacesToVisit.length)
System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[lastPosition * 2][], 0, lastPosition);
interfacesToVisit[lastPosition] = itsInterfaces;
}
} while ((currentType = currentType.superclass()) != null && (currentType.tagBits & HasNoMemberTypes) == 0);
if (interfacesToVisit != null) {
// contains the interfaces between the sourceType and any superclass, which was tagged as having no member types
boolean needToTag = false;
for (int i = 0; i <= lastPosition; i++) {
ReferenceBinding[] interfaces = interfacesToVisit[i];
for (int j = 0, length = interfaces.length; j < length; j++) {
ReferenceBinding anInterface = interfaces[j];
if ((anInterface.tagBits & HasNoMemberTypes) == 0) { // skip interface if it already knows it has no member types
if (anInterface.hasMemberTypes()) // avoid resolving member types eagerly
return;
needToTag = true;
ReferenceBinding[] itsInterfaces = anInterface.superInterfaces();
if (itsInterfaces != NoSuperInterfaces) {
if (++lastPosition == interfacesToVisit.length)
System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[lastPosition * 2][], 0, lastPosition);
interfacesToVisit[lastPosition] = itsInterfaces;
}
}
}
}
if (needToTag) {
for (int i = 0; i <= lastPosition; i++) {
ReferenceBinding[] interfaces = interfacesToVisit[i];
for (int j = 0, length = interfaces.length; j < length; j++)
interfaces[j].tagBits |= HasNoMemberTypes;
}
}
}
// tag the sourceType and all of its superclasses, unless they have already been tagged
currentType = sourceType;
do {
currentType.tagBits |= HasNoMemberTypes;
} while ((currentType = currentType.superclass()) != null && (currentType.tagBits & HasNoMemberTypes) == 0);
}
// Perform deferred bound checks for parameterized type references (only done after hierarchy is connected)
private void checkParameterizedTypeBounds() {
TypeReference superclass = referenceContext.superclass;
if (superclass != null) {
superclass.checkBounds(this);
}
TypeReference[] superinterfaces = referenceContext.superInterfaces;
if (superinterfaces != null) {
for (int i = 0, length = superinterfaces.length; i < length; i++) {
superinterfaces[i].checkBounds(this);
}
}
TypeParameter[] typeParameters = referenceContext.typeParameters;
if (typeParameters != null) {
for (int i = 0, paramLength = typeParameters.length; i < paramLength; i++) {
typeParameters[i].checkBounds(this);
}
}
}
private void connectMemberTypes() {
SourceTypeBinding sourceType = referenceContext.binding;
ReferenceBinding[] memberTypes = sourceType.memberTypes;
if (memberTypes != null && memberTypes != NoMemberTypes) {
for (int i = 0, size = memberTypes.length; i < size; i++)
((SourceTypeBinding) memberTypes[i]).scope.connectTypeHierarchy();
}
}
/*
Our current belief based on available JCK tests is:
inherited member types are visible as a potential superclass.
inherited interfaces are not visible when defining a superinterface.
Error recovery story:
ensure the superclass is set to java.lang.Object if a problem is detected
resolving the superclass.
Answer false if an error was reported against the sourceType.
*/
private boolean connectSuperclass() {
SourceTypeBinding sourceType = referenceContext.binding;
if (sourceType.id == T_JavaLangObject) { // handle the case of redefining java.lang.Object up front
sourceType.superclass = null;
sourceType.superInterfaces = NoSuperInterfaces;
if (!sourceType.isClass())
problemReporter().objectMustBeClass(sourceType);
if (referenceContext.superclass != null || (referenceContext.superInterfaces != null && referenceContext.superInterfaces.length > 0))
problemReporter().objectCannotHaveSuperTypes(sourceType);
return true; // do not propagate Object's hierarchy problems down to every subtype
}
if (referenceContext.superclass == null) {
if (sourceType.isEnum() && environment().options.sourceLevel >= JDK1_5) // do not connect if source < 1.5 as enum already got flagged as syntax error
return connectEnumSuperclass();
sourceType.superclass = getJavaLangObject();
return !detectHierarchyCycle(sourceType, sourceType.superclass, null);
}
TypeReference superclassRef = referenceContext.superclass;
ReferenceBinding superclass = findSupertype(superclassRef);
if (superclass != null) { // is null if a cycle was detected cycle or a problem
if (!superclass.isClass()) {
problemReporter().superclassMustBeAClass(sourceType, superclassRef, superclass);
} else if (superclass.isFinal()) {
problemReporter().classExtendFinalClass(sourceType, superclassRef, superclass);
} else if ((superclass.tagBits & TagBits.HasDirectWildcard) != 0) {
problemReporter().superTypeCannotUseWildcard(sourceType, superclassRef, superclass);
} else if (superclass.erasure().id == T_JavaLangEnum) {
problemReporter().cannotExtendEnum(sourceType, superclassRef, superclass);
} else {
// only want to reach here when no errors are reported
sourceType.superclass = superclass;
return true;
}
}
sourceType.tagBits |= HierarchyHasProblems;
sourceType.superclass = getJavaLangObject();
if ((sourceType.superclass.tagBits & BeginHierarchyCheck) == 0)
detectHierarchyCycle(sourceType, sourceType.superclass, null);
return false; // reported some error against the source type
}
/**
* enum X (implicitly) extends Enum<X>
*/
private boolean connectEnumSuperclass() {
SourceTypeBinding sourceType = referenceContext.binding;
ReferenceBinding rootEnumType = getJavaLangEnum();
boolean foundCycle = detectHierarchyCycle(sourceType, rootEnumType, null);
// arity check for well-known Enum<E>
TypeVariableBinding[] refTypeVariables = rootEnumType.typeVariables();
if (refTypeVariables == NoTypeVariables) { // check generic
problemReporter().nonGenericTypeCannotBeParameterized(null, rootEnumType, new TypeBinding[]{ sourceType });
return false; // cannot reach here as AbortCompilation is thrown
} else if (1 != refTypeVariables.length) { // check arity
problemReporter().incorrectArityForParameterizedType(null, rootEnumType, new TypeBinding[]{ sourceType });
return false; // cannot reach here as AbortCompilation is thrown
}
// check argument type compatibility
ParameterizedTypeBinding superType = createParameterizedType(rootEnumType, new TypeBinding[]{ sourceType } , null);
sourceType.superclass = superType;
// bound check
if (refTypeVariables[0].boundCheck(superType, sourceType) != TypeConstants.OK) {
problemReporter().typeMismatchError(rootEnumType, refTypeVariables[0], sourceType, null);
}
return !foundCycle;
}
/*
Our current belief based on available JCK 1.3 tests is:
inherited member types are visible as a potential superclass.
inherited interfaces are visible when defining a superinterface.
Error recovery story:
ensure the superinterfaces contain only valid visible interfaces.
Answer false if an error was reported against the sourceType.
*/
private boolean connectSuperInterfaces() {
SourceTypeBinding sourceType = referenceContext.binding;
sourceType.superInterfaces = NoSuperInterfaces;
if (referenceContext.superInterfaces == null) {
if (sourceType.isAnnotationType() && environment().options.sourceLevel >= JDK1_5) { // do not connect if source < 1.5 as annotation already got flagged as syntax error) {
ReferenceBinding annotationType = getJavaLangAnnotationAnnotation();
boolean foundCycle = detectHierarchyCycle(sourceType, annotationType, null);
sourceType.superInterfaces = new ReferenceBinding[] { annotationType };
return !foundCycle;
}
return true;
}
if (sourceType.id == T_JavaLangObject) // already handled the case of redefining java.lang.Object
return true;
boolean noProblems = true;
int length = referenceContext.superInterfaces.length;
ReferenceBinding[] interfaceBindings = new ReferenceBinding[length];
int count = 0;
nextInterface : for (int i = 0; i < length; i++) {
TypeReference superInterfaceRef = referenceContext.superInterfaces[i];
ReferenceBinding superInterface = findSupertype(superInterfaceRef);
if (superInterface == null) { // detected cycle
sourceType.tagBits |= HierarchyHasProblems;
noProblems = false;
continue nextInterface;
}
superInterfaceRef.resolvedType = superInterface; // hold onto the problem type
// Check for a duplicate interface once the name is resolved, otherwise we may be confused (ie : a.b.I and c.d.I)
for (int k = 0; k < count; k++) {
if (interfaceBindings[k].erasure() == superInterface.erasure()) {
problemReporter().duplicateSuperinterface(sourceType, referenceContext, (ReferenceBinding) superInterface.erasure());
continue nextInterface;
}
}
if (!superInterface.isInterface()) {
problemReporter().superinterfaceMustBeAnInterface(sourceType, superInterfaceRef, superInterface);
sourceType.tagBits |= HierarchyHasProblems;
noProblems = false;
continue nextInterface;
} else if (superInterface.isAnnotationType()){
problemReporter().annotationTypeUsedAsSuperinterface(sourceType, superInterfaceRef, superInterface);
}
if ((superInterface.tagBits & TagBits.HasDirectWildcard) != 0) {
problemReporter().superTypeCannotUseWildcard(sourceType, superInterfaceRef, superInterface);
sourceType.tagBits |= HierarchyHasProblems;
noProblems = false;
continue nextInterface;
}
ReferenceBinding invalid = findAmbiguousInterface(superInterface, sourceType);
if (invalid != null) {
ReferenceBinding generic = null;
if (superInterface.isParameterizedType())
generic = ((ParameterizedTypeBinding) superInterface).type;
else if (invalid.isParameterizedType())
generic = ((ParameterizedTypeBinding) invalid).type;
problemReporter().superinterfacesCollide(generic, referenceContext, superInterface, invalid);
sourceType.tagBits |= HierarchyHasProblems;
noProblems = false;
continue nextInterface;
}
// only want to reach here when no errors are reported
interfaceBindings[count++] = superInterface;
}
// hold onto all correctly resolved superinterfaces
if (count > 0) {
if (count != length)
System.arraycopy(interfaceBindings, 0, interfaceBindings = new ReferenceBinding[count], 0, count);
sourceType.superInterfaces = interfaceBindings;
}
return noProblems;
}
void connectTypeHierarchy() {
SourceTypeBinding sourceType = referenceContext.binding;
if ((sourceType.tagBits & BeginHierarchyCheck) == 0) {
sourceType.tagBits |= BeginHierarchyCheck;
boolean noProblems = connectSuperclass();
noProblems &= connectSuperInterfaces();
noProblems &= connectTypeVariables(referenceContext.typeParameters);
sourceType.tagBits |= EndHierarchyCheck;
if (noProblems && sourceType.isHierarchyInconsistent())
problemReporter().hierarchyHasProblems(sourceType);
}
// Perform deferred bound checks for parameterized type references (only done after hierarchy is connected)
checkParameterizedTypeBounds();
connectMemberTypes();
try {
checkForInheritedMemberTypes(sourceType);
} catch (AbortCompilation e) {
e.updateContext(referenceContext, referenceCompilationUnit().compilationResult);
throw e;
}
}
private void connectTypeHierarchyWithoutMembers() {
// must ensure the imports are resolved
if (parent instanceof CompilationUnitScope) {
if (((CompilationUnitScope) parent).imports == null)
((CompilationUnitScope) parent).checkAndSetImports();
} else if (parent instanceof ClassScope) {
// ensure that the enclosing type has already been checked
((ClassScope) parent).connectTypeHierarchyWithoutMembers();
}
// double check that the hierarchy search has not already begun...
SourceTypeBinding sourceType = referenceContext.binding;
if ((sourceType.tagBits & BeginHierarchyCheck) != 0)
return;
sourceType.tagBits |= BeginHierarchyCheck;
boolean noProblems = connectSuperclass();
noProblems &= connectSuperInterfaces();
noProblems &= connectTypeVariables(referenceContext.typeParameters);
sourceType.tagBits |= EndHierarchyCheck;
if (noProblems && sourceType.isHierarchyInconsistent())
problemReporter().hierarchyHasProblems(sourceType);
}
public boolean detectHierarchyCycle(TypeBinding superType, TypeReference reference, TypeBinding[] argTypes) {
if (!(superType instanceof ReferenceBinding)) return false;
if (argTypes != null) {
for (int i = 0, l = argTypes.length; i < l; i++) {
TypeBinding argType = argTypes[i].leafComponentType();
if ((argType.tagBits & BeginHierarchyCheck) == 0 && argType instanceof SourceTypeBinding)
// ensure if this is a source argument type that it has already been checked
((SourceTypeBinding) argType).scope.connectTypeHierarchyWithoutMembers();
}
}
if (reference == this.superTypeReference) { // see findSuperType()
if (superType.isTypeVariable())
return false; // error case caught in resolveSuperType()
// abstract class X<K,V> implements java.util.Map<K,V>
// static abstract class M<K,V> implements Entry<K,V>
if (superType.isParameterizedType())
superType = ((ParameterizedTypeBinding) superType).type;
compilationUnitScope().recordSuperTypeReference(superType); // to record supertypes
return detectHierarchyCycle(referenceContext.binding, (ReferenceBinding) superType, reference);
}
if ((superType.tagBits & BeginHierarchyCheck) == 0 && superType instanceof SourceTypeBinding)
// ensure if this is a source superclass that it has already been checked
((SourceTypeBinding) superType).scope.connectTypeHierarchyWithoutMembers();
return false;
}
// Answer whether a cycle was found between the sourceType & the superType
private boolean detectHierarchyCycle(SourceTypeBinding sourceType, ReferenceBinding superType, TypeReference reference) {
if (superType.isRawType())
superType = ((RawTypeBinding) superType).type;
// by this point the superType must be a binary or source type
if (sourceType == superType) {
problemReporter().hierarchyCircularity(sourceType, superType, reference);
sourceType.tagBits |= HierarchyHasProblems;
return true;
}
if (superType.isMemberType()) {
ReferenceBinding current = superType.enclosingType();
do {
if (current.isHierarchyBeingConnected()) {
problemReporter().hierarchyCircularity(sourceType, current, reference);
sourceType.tagBits |= HierarchyHasProblems;
current.tagBits |= HierarchyHasProblems;
return true;
}
} while ((current = current.enclosingType()) != null);
}
if (superType.isBinaryBinding()) {
// force its superclass & superinterfaces to be found... 2 possibilities exist - the source type is included in the hierarchy of:
// - a binary type... this case MUST be caught & reported here
// - another source type... this case is reported against the other source type
boolean hasCycle = false;
ReferenceBinding parentType = superType.superclass();
if (parentType != null) {
if (sourceType == parentType) {
problemReporter().hierarchyCircularity(sourceType, superType, reference);
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems;
return true;
}
if (parentType.isParameterizedType())
parentType = ((ParameterizedTypeBinding) parentType).type;
hasCycle |= detectHierarchyCycle(sourceType, parentType, reference);
if ((parentType.tagBits & HierarchyHasProblems) != 0) {
sourceType.tagBits |= HierarchyHasProblems;
parentType.tagBits |= HierarchyHasProblems; // propagate down the hierarchy
}
}
ReferenceBinding[] itsInterfaces = superType.superInterfaces();
if (itsInterfaces != NoSuperInterfaces) {
for (int i = 0, length = itsInterfaces.length; i < length; i++) {
ReferenceBinding anInterface = itsInterfaces[i];
if (sourceType == anInterface) {
problemReporter().hierarchyCircularity(sourceType, superType, reference);
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems;
return true;
}
if (anInterface.isParameterizedType())
anInterface = ((ParameterizedTypeBinding) anInterface).type;
hasCycle |= detectHierarchyCycle(sourceType, anInterface, reference);
if ((anInterface.tagBits & HierarchyHasProblems) != 0) {
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems;
}
}
}
return hasCycle;
}
if (superType.isHierarchyBeingConnected()) {
if (((SourceTypeBinding) superType).scope.superTypeReference != null) { // if null then its connecting its type variables
problemReporter().hierarchyCircularity(sourceType, superType, reference);
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems;
return true;
}
}
if ((superType.tagBits & BeginHierarchyCheck) == 0)
// ensure if this is a source superclass that it has already been checked
((SourceTypeBinding) superType).scope.connectTypeHierarchyWithoutMembers();
if ((superType.tagBits & HierarchyHasProblems) != 0)
sourceType.tagBits |= HierarchyHasProblems;
return false;
}
private ReferenceBinding findAmbiguousInterface(ReferenceBinding newInterface, ReferenceBinding currentType) {
TypeBinding newErasure = newInterface.erasure();
if (newInterface == newErasure) return null;
ReferenceBinding[][] interfacesToVisit = new ReferenceBinding[5][];
int lastPosition = -1;
do {
ReferenceBinding[] itsInterfaces = currentType.superInterfaces();
if (itsInterfaces != NoSuperInterfaces) {
if (++lastPosition == interfacesToVisit.length)
System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[lastPosition * 2][], 0, lastPosition);
interfacesToVisit[lastPosition] = itsInterfaces;
}
} while ((currentType = currentType.superclass()) != null);
for (int i = 0; i <= lastPosition; i++) {
ReferenceBinding[] interfaces = interfacesToVisit[i];
for (int j = 0, length = interfaces.length; j < length; j++) {
currentType = interfaces[j];
if (currentType.erasure() == newErasure)
if (currentType != newInterface)
return currentType;
ReferenceBinding[] itsInterfaces = currentType.superInterfaces();
if (itsInterfaces != NoSuperInterfaces) {
if (++lastPosition == interfacesToVisit.length)
System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[lastPosition * 2][], 0, lastPosition);
interfacesToVisit[lastPosition] = itsInterfaces;
}
}
}
return null;
}
private ReferenceBinding findSupertype(TypeReference typeReference) {
try {
typeReference.aboutToResolve(this); // allows us to trap completion & selection nodes
compilationUnitScope().recordQualifiedReference(typeReference.getTypeName());
this.superTypeReference = typeReference;
ReferenceBinding superType = (ReferenceBinding) typeReference.resolveSuperType(this);
this.superTypeReference = null;
return superType;
} catch (AbortCompilation e) {
e.updateContext(typeReference, referenceCompilationUnit().compilationResult);
throw e;
}
}
/* Answer the problem reporter to use for raising new problems.
*
* Note that as a side-effect, this updates the current reference context
* (unit, type or method) in case the problem handler decides it is necessary
* to abort.
*/
public ProblemReporter problemReporter() {
MethodScope outerMethodScope;
if ((outerMethodScope = outerMostMethodScope()) == null) {
ProblemReporter problemReporter = referenceCompilationUnit().problemReporter;
problemReporter.referenceContext = referenceContext;
return problemReporter;
}
return outerMethodScope.problemReporter();
}
/* Answer the reference type of this scope.
* It is the nearest enclosing type of this scope.
*/
public TypeDeclaration referenceType() {
return referenceContext;
}
public String toString() {
if (referenceContext != null)
return "--- Class Scope ---\n\n" //$NON-NLS-1$
+ referenceContext.binding.toString();
return "--- Class Scope ---\n\n Binding not initialized" ; //$NON-NLS-1$
}
}