blob: 12057f396ece15c43563760761ca65b18c834b79 [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 2000, 2004 IBM Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Common Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/cpl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
*******************************************************************************/
package org.eclipse.jdt.internal.compiler.lookup;
import org.eclipse.jdt.core.compiler.CharOperation;
import org.eclipse.jdt.internal.compiler.ast.AbstractMethodDeclaration;
import org.eclipse.jdt.internal.compiler.ast.Clinit;
import org.eclipse.jdt.internal.compiler.ast.FieldDeclaration;
import org.eclipse.jdt.internal.compiler.ast.TypeDeclaration;
import org.eclipse.jdt.internal.compiler.ast.TypeReference;
import org.eclipse.jdt.internal.compiler.problem.AbortCompilation;
import org.eclipse.jdt.internal.compiler.problem.ProblemReporter;
import org.eclipse.jdt.internal.compiler.util.HashtableOfObject;
public class ClassScope extends Scope {
public TypeDeclaration referenceContext;
private final static char[] IncompleteHierarchy = new char[] {'h', 'a', 's', ' ', 'i', 'n', 'c', 'o', 'n', 's', 'i', 's', 't', 'e', 'n', 't', ' ', 'h', 'i', 'e', 'r', 'a', 'r', 'c', 'h', 'y'};
public ClassScope(Scope parent, TypeDeclaration context) {
super(CLASS_SCOPE, parent);
this.referenceContext = context;
}
void buildAnonymousTypeBinding(SourceTypeBinding enclosingType, ReferenceBinding supertype) {
LocalTypeBinding anonymousType = buildLocalType(enclosingType, enclosingType.fPackage);
SourceTypeBinding sourceType = referenceContext.binding;
if (supertype.isInterface()) {
sourceType.superclass = getJavaLangObject();
sourceType.superInterfaces = new ReferenceBinding[] { supertype };
} else {
sourceType.superclass = supertype;
sourceType.superInterfaces = TypeConstants.NoSuperInterfaces;
}
connectMemberTypes();
buildFieldsAndMethods();
anonymousType.faultInTypesForFieldsAndMethods();
sourceType.verifyMethods(environment().methodVerifier());
}
private void buildFields() {
boolean hierarchyIsInconsistent = referenceContext.binding.isHierarchyInconsistent();
if (referenceContext.fields == null) {
if (hierarchyIsInconsistent) { // 72468
referenceContext.binding.fields = new FieldBinding[1];
referenceContext.binding.fields[0] =
new FieldBinding(IncompleteHierarchy, VoidBinding, AccPrivate, referenceContext.binding, null);
} else {
referenceContext.binding.fields = NoFields;
}
return;
}
// count the number of fields vs. initializers
FieldDeclaration[] fields = referenceContext.fields;
int size = fields.length;
int count = 0;
for (int i = 0; i < size; i++)
if (fields[i].isField())
count++;
if (hierarchyIsInconsistent)
count++;
// iterate the field declarations to create the bindings, lose all duplicates
FieldBinding[] fieldBindings = new FieldBinding[count];
HashtableOfObject knownFieldNames = new HashtableOfObject(count);
boolean duplicate = false;
count = 0;
for (int i = 0; i < size; i++) {
FieldDeclaration field = fields[i];
if (!field.isField()) {
if (referenceContext.binding.isInterface())
problemReporter().interfaceCannotHaveInitializers(referenceContext.binding, field);
} else {
FieldBinding fieldBinding = new FieldBinding(field, null, field.modifiers | AccUnresolved, referenceContext.binding);
// field's type will be resolved when needed for top level types
checkAndSetModifiersForField(fieldBinding, field);
if (knownFieldNames.containsKey(field.name)) {
duplicate = true;
FieldBinding previousBinding = (FieldBinding) knownFieldNames.get(field.name);
if (previousBinding != null) {
for (int f = 0; f < i; f++) {
FieldDeclaration previousField = fields[f];
if (previousField.binding == previousBinding) {
problemReporter().duplicateFieldInType(referenceContext.binding, previousField);
previousField.binding = null;
break;
}
}
}
knownFieldNames.put(field.name, null); // ensure that the duplicate field is found & removed
problemReporter().duplicateFieldInType(referenceContext.binding, field);
field.binding = null;
} else {
knownFieldNames.put(field.name, fieldBinding);
// remember that we have seen a field with this name
if (fieldBinding != null)
fieldBindings[count++] = fieldBinding;
}
}
}
// remove duplicate fields
if (duplicate) {
FieldBinding[] newFieldBindings = new FieldBinding[fieldBindings.length];
// we know we'll be removing at least 1 duplicate name
size = count;
count = 0;
for (int i = 0; i < size; i++) {
FieldBinding fieldBinding = fieldBindings[i];
if (knownFieldNames.get(fieldBinding.name) != null)
newFieldBindings[count++] = fieldBinding;
}
fieldBindings = newFieldBindings;
}
if (hierarchyIsInconsistent)
fieldBindings[count++] = new FieldBinding(IncompleteHierarchy, VoidBinding, AccPrivate, referenceContext.binding, null);
if (count != fieldBindings.length)
System.arraycopy(fieldBindings, 0, fieldBindings = new FieldBinding[count], 0, count);
for (int i = 0; i < count; i++)
fieldBindings[i].id = i;
referenceContext.binding.fields = fieldBindings;
}
void buildFieldsAndMethods() {
buildFields();
buildMethods();
SourceTypeBinding sourceType = referenceContext.binding;
if (sourceType.isMemberType() && !sourceType.isLocalType())
((MemberTypeBinding) sourceType).checkSyntheticArgsAndFields();
ReferenceBinding[] memberTypes = sourceType.memberTypes;
for (int i = 0, length = memberTypes.length; i < length; i++)
((SourceTypeBinding) memberTypes[i]).scope.buildFieldsAndMethods();
}
private LocalTypeBinding buildLocalType(
SourceTypeBinding enclosingType,
PackageBinding packageBinding) {
referenceContext.scope = this;
referenceContext.staticInitializerScope = new MethodScope(this, referenceContext, true);
referenceContext.initializerScope = new MethodScope(this, referenceContext, false);
// build the binding or the local type
LocalTypeBinding localType = new LocalTypeBinding(this, enclosingType, this.switchCase());
referenceContext.binding = localType;
checkAndSetModifiers();
// Look at member types
ReferenceBinding[] memberTypeBindings = NoMemberTypes;
if (referenceContext.memberTypes != null) {
int size = referenceContext.memberTypes.length;
memberTypeBindings = new ReferenceBinding[size];
int count = 0;
nextMember : for (int i = 0; i < size; i++) {
TypeDeclaration memberContext = referenceContext.memberTypes[i];
if (memberContext.isInterface()) {
problemReporter().nestedClassCannotDeclareInterface(memberContext);
continue nextMember;
}
ReferenceBinding type = localType;
// check that the member does not conflict with an enclosing type
do {
if (CharOperation.equals(type.sourceName, memberContext.name)) {
problemReporter().hidingEnclosingType(memberContext);
continue nextMember;
}
type = type.enclosingType();
} while (type != null);
// check the member type does not conflict with another sibling member type
for (int j = 0; j < i; j++) {
if (CharOperation.equals(referenceContext.memberTypes[j].name, memberContext.name)) {
problemReporter().duplicateNestedType(memberContext);
continue nextMember;
}
}
ClassScope memberScope = new ClassScope(this, referenceContext.memberTypes[i]);
LocalTypeBinding memberBinding = memberScope.buildLocalType(localType, packageBinding);
memberBinding.setAsMemberType();
memberTypeBindings[count++] = memberBinding;
}
if (count != size)
System.arraycopy(memberTypeBindings, 0, memberTypeBindings = new ReferenceBinding[count], 0, count);
}
localType.memberTypes = memberTypeBindings;
return localType;
}
void buildLocalTypeBinding(SourceTypeBinding enclosingType) {
LocalTypeBinding localType = buildLocalType(enclosingType, enclosingType.fPackage);
connectTypeHierarchy();
buildFieldsAndMethods();
localType.faultInTypesForFieldsAndMethods();
referenceContext.binding.verifyMethods(environment().methodVerifier());
}
private void buildMethods() {
if (referenceContext.methods == null) {
referenceContext.binding.methods = NoMethods;
return;
}
// iterate the method declarations to create the bindings
AbstractMethodDeclaration[] methods = referenceContext.methods;
int size = methods.length;
int clinitIndex = -1;
for (int i = 0; i < size; i++) {
if (methods[i] instanceof Clinit) {
clinitIndex = i;
break;
}
}
MethodBinding[] methodBindings = new MethodBinding[clinitIndex == -1 ? size : size - 1];
int count = 0;
for (int i = 0; i < size; i++) {
if (i != clinitIndex) {
MethodScope scope = new MethodScope(this, methods[i], false);
MethodBinding methodBinding = scope.createMethod(methods[i]);
if (methodBinding != null) // is null if binding could not be created
methodBindings[count++] = methodBinding;
}
}
if (count != methodBindings.length)
System.arraycopy(methodBindings, 0, methodBindings = new MethodBinding[count], 0, count);
referenceContext.binding.methods = methodBindings;
referenceContext.binding.modifiers |= AccUnresolved; // until methods() is sent
}
SourceTypeBinding buildType(SourceTypeBinding enclosingType, PackageBinding packageBinding) {
// provide the typeDeclaration with needed scopes
referenceContext.scope = this;
referenceContext.staticInitializerScope = new MethodScope(this, referenceContext, true);
referenceContext.initializerScope = new MethodScope(this, referenceContext, false);
if (enclosingType == null) {
char[][] className = CharOperation.arrayConcat(packageBinding.compoundName, referenceContext.name);
referenceContext.binding = new SourceTypeBinding(className, packageBinding, this);
} else {
char[][] className = CharOperation.deepCopy(enclosingType.compoundName);
className[className.length - 1] =
CharOperation.concat(className[className.length - 1], referenceContext.name, '$');
referenceContext.binding = new MemberTypeBinding(className, this, enclosingType);
}
SourceTypeBinding sourceType = referenceContext.binding;
sourceType.fPackage.addType(sourceType);
checkAndSetModifiers();
// Look at member types
ReferenceBinding[] memberTypeBindings = NoMemberTypes;
if (referenceContext.memberTypes != null) {
int size = referenceContext.memberTypes.length;
memberTypeBindings = new ReferenceBinding[size];
int count = 0;
nextMember : for (int i = 0; i < size; i++) {
TypeDeclaration memberContext = referenceContext.memberTypes[i];
if (memberContext.isInterface()
&& sourceType.isNestedType()
&& sourceType.isClass()
&& !sourceType.isStatic()) {
problemReporter().nestedClassCannotDeclareInterface(memberContext);
continue nextMember;
}
ReferenceBinding type = sourceType;
// check that the member does not conflict with an enclosing type
do {
if (CharOperation.equals(type.sourceName, memberContext.name)) {
problemReporter().hidingEnclosingType(memberContext);
continue nextMember;
}
type = type.enclosingType();
} while (type != null);
// check that the member type does not conflict with another sibling member type
for (int j = 0; j < i; j++) {
if (CharOperation.equals(referenceContext.memberTypes[j].name, memberContext.name)) {
problemReporter().duplicateNestedType(memberContext);
continue nextMember;
}
}
ClassScope memberScope = new ClassScope(this, memberContext);
memberTypeBindings[count++] = memberScope.buildType(sourceType, packageBinding);
}
if (count != size)
System.arraycopy(memberTypeBindings, 0, memberTypeBindings = new ReferenceBinding[count], 0, count);
}
sourceType.memberTypes = memberTypeBindings;
return sourceType;
}
private void checkAndSetModifiers() {
SourceTypeBinding sourceType = referenceContext.binding;
int modifiers = sourceType.modifiers;
if ((modifiers & AccAlternateModifierProblem) != 0)
problemReporter().duplicateModifierForType(sourceType);
ReferenceBinding enclosingType = sourceType.enclosingType();
boolean isMemberType = sourceType.isMemberType();
if (isMemberType) {
// checks for member types before local types to catch local members
if (enclosingType.isStrictfp())
modifiers |= AccStrictfp;
if (enclosingType.isViewedAsDeprecated() && !sourceType.isDeprecated())
modifiers |= AccDeprecatedImplicitly;
if (enclosingType.isInterface())
modifiers |= AccPublic;
} else if (sourceType.isLocalType()) {
if (sourceType.isAnonymousType())
modifiers |= AccFinal;
Scope scope = this;
do {
switch (scope.kind) {
case METHOD_SCOPE :
MethodScope methodScope = (MethodScope) scope;
if (methodScope.isInsideInitializer()) {
SourceTypeBinding type = ((TypeDeclaration) methodScope.referenceContext).binding;
// inside field declaration ? check field modifier to see if deprecated
if (methodScope.initializedField != null) {
// currently inside this field initialization
if (methodScope.initializedField.isViewedAsDeprecated() && !sourceType.isDeprecated()){
modifiers |= AccDeprecatedImplicitly;
}
} else {
if (type.isStrictfp())
modifiers |= AccStrictfp;
if (type.isViewedAsDeprecated() && !sourceType.isDeprecated())
modifiers |= AccDeprecatedImplicitly;
}
} else {
MethodBinding method = ((AbstractMethodDeclaration) methodScope.referenceContext).binding;
if (method != null){
if (method.isStrictfp())
modifiers |= AccStrictfp;
if (method.isViewedAsDeprecated() && !sourceType.isDeprecated())
modifiers |= AccDeprecatedImplicitly;
}
}
break;
case CLASS_SCOPE :
// local member
if (enclosingType.isStrictfp())
modifiers |= AccStrictfp;
if (enclosingType.isViewedAsDeprecated() && !sourceType.isDeprecated())
modifiers |= AccDeprecatedImplicitly;
break;
}
scope = scope.parent;
} while (scope != null);
}
// after this point, tests on the 16 bits reserved.
int realModifiers = modifiers & AccJustFlag;
if ((realModifiers & AccInterface) != 0) {
// detect abnormal cases for interfaces
if (isMemberType) {
int unexpectedModifiers =
~(AccPublic | AccPrivate | AccProtected | AccStatic | AccAbstract | AccInterface | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForMemberInterface(sourceType);
/*
} else if (sourceType.isLocalType()) { //interfaces cannot be defined inside a method
int unexpectedModifiers = ~(AccAbstract | AccInterface | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForLocalInterface(sourceType);
*/
} else {
int unexpectedModifiers = ~(AccPublic | AccAbstract | AccInterface | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForInterface(sourceType);
}
modifiers |= AccAbstract;
} else {
// detect abnormal cases for types
if (isMemberType) { // includes member types defined inside local types
int unexpectedModifiers =
~(AccPublic | AccPrivate | AccProtected | AccStatic | AccAbstract | AccFinal | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForMemberClass(sourceType);
} else if (sourceType.isLocalType()) {
int unexpectedModifiers = ~(AccAbstract | AccFinal | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForLocalClass(sourceType);
} else {
int unexpectedModifiers = ~(AccPublic | AccAbstract | AccFinal | AccStrictfp);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForClass(sourceType);
}
// check that Final and Abstract are not set together
if ((realModifiers & (AccFinal | AccAbstract)) == (AccFinal | AccAbstract))
problemReporter().illegalModifierCombinationFinalAbstractForClass(sourceType);
}
if (isMemberType) {
// test visibility modifiers inconsistency, isolate the accessors bits
if (enclosingType.isInterface()) {
if ((realModifiers & (AccProtected | AccPrivate)) != 0) {
problemReporter().illegalVisibilityModifierForInterfaceMemberType(sourceType);
// need to keep the less restrictive
if ((realModifiers & AccProtected) != 0)
modifiers ^= AccProtected;
if ((realModifiers & AccPrivate) != 0)
modifiers ^= AccPrivate;
}
} else {
int accessorBits = realModifiers & (AccPublic | AccProtected | AccPrivate);
if ((accessorBits & (accessorBits - 1)) > 1) {
problemReporter().illegalVisibilityModifierCombinationForMemberType(sourceType);
// need to keep the less restrictive
if ((accessorBits & AccPublic) != 0) {
if ((accessorBits & AccProtected) != 0)
modifiers ^= AccProtected;
if ((accessorBits & AccPrivate) != 0)
modifiers ^= AccPrivate;
}
if ((accessorBits & AccProtected) != 0)
if ((accessorBits & AccPrivate) != 0)
modifiers ^= AccPrivate;
}
}
// static modifier test
if ((realModifiers & AccStatic) == 0) {
if (enclosingType.isInterface())
modifiers |= AccStatic;
} else {
if (!enclosingType.isStatic())
// error the enclosing type of a static field must be static or a top-level type
problemReporter().illegalStaticModifierForMemberType(sourceType);
}
}
sourceType.modifiers = modifiers;
}
/* This method checks the modifiers of a field.
*
* 9.3 & 8.3
* Need to integrate the check for the final modifiers for nested types
*
* Note : A scope is accessible by : fieldBinding.declaringClass.scope
*/
private void checkAndSetModifiersForField(FieldBinding fieldBinding, FieldDeclaration fieldDecl) {
int modifiers = fieldBinding.modifiers;
if ((modifiers & AccAlternateModifierProblem) != 0)
problemReporter().duplicateModifierForField(fieldBinding.declaringClass, fieldDecl);
if (fieldBinding.declaringClass.isInterface()) {
int expectedValue = AccPublic | AccStatic | AccFinal;
// set the modifiers
modifiers |= expectedValue;
// and then check that they are the only ones
if ((modifiers & AccJustFlag) != expectedValue)
problemReporter().illegalModifierForInterfaceField(fieldBinding.declaringClass, fieldDecl);
fieldBinding.modifiers = modifiers;
return;
}
// after this point, tests on the 16 bits reserved.
int realModifiers = modifiers & AccJustFlag;
int unexpectedModifiers =
~(AccPublic | AccPrivate | AccProtected | AccFinal | AccStatic | AccTransient | AccVolatile);
if ((realModifiers & unexpectedModifiers) != 0)
problemReporter().illegalModifierForField(fieldBinding.declaringClass, fieldDecl);
int accessorBits = realModifiers & (AccPublic | AccProtected | AccPrivate);
if ((accessorBits & (accessorBits - 1)) > 1) {
problemReporter().illegalVisibilityModifierCombinationForField(
fieldBinding.declaringClass,
fieldDecl);
// need to keep the less restrictive
if ((accessorBits & AccPublic) != 0) {
if ((accessorBits & AccProtected) != 0)
modifiers ^= AccProtected;
if ((accessorBits & AccPrivate) != 0)
modifiers ^= AccPrivate;
}
if ((accessorBits & AccProtected) != 0)
if ((accessorBits & AccPrivate) != 0)
modifiers ^= AccPrivate;
}
if ((realModifiers & (AccFinal | AccVolatile)) == (AccFinal | AccVolatile))
problemReporter().illegalModifierCombinationFinalVolatileForField(
fieldBinding.declaringClass,
fieldDecl);
if (fieldDecl.initialization == null && (modifiers & AccFinal) != 0) {
modifiers |= AccBlankFinal;
}
fieldBinding.modifiers = modifiers;
}
private void checkForInheritedMemberTypes(SourceTypeBinding sourceType) {
// search up the hierarchy of the sourceType to see if any superType defines a member type
// when no member types are defined, tag the sourceType & each superType with the HasNoMemberTypes bit
ReferenceBinding currentType = sourceType;
ReferenceBinding[][] interfacesToVisit = null;
int lastPosition = -1;
do {
if ((currentType.tagBits & HasNoMemberTypes) != 0)
break; // already know it has no inherited member types, can stop looking up
if (currentType.hasMemberTypes()) // avoid resolving member types eagerly
return; // has member types
ReferenceBinding[] itsInterfaces = currentType.superInterfaces();
if (itsInterfaces != NoSuperInterfaces) {
if (interfacesToVisit == null)
interfacesToVisit = new ReferenceBinding[5][];
if (++lastPosition == interfacesToVisit.length)
System.arraycopy(
interfacesToVisit,
0,
interfacesToVisit = new ReferenceBinding[lastPosition * 2][],
0,
lastPosition);
interfacesToVisit[lastPosition] = itsInterfaces;
}
} while ((currentType = currentType.superclass()) != null);
boolean hasMembers = false;
if (interfacesToVisit != null) {
done : for (int i = 0; i <= lastPosition; i++) {
ReferenceBinding[] interfaces = interfacesToVisit[i];
for (int j = 0, length = interfaces.length; j < length; j++) {
ReferenceBinding anInterface = interfaces[j];
if ((anInterface.tagBits & InterfaceVisited) == 0) { // if interface as not already been visited
anInterface.tagBits |= InterfaceVisited;
if ((anInterface.tagBits & HasNoMemberTypes) != 0)
continue; // already know it has no inherited member types
if (anInterface.memberTypes() != NoMemberTypes) {
hasMembers = true;
break done;
}
ReferenceBinding[] itsInterfaces = anInterface.superInterfaces();
if (itsInterfaces != NoSuperInterfaces) {
if (++lastPosition == interfacesToVisit.length)
System.arraycopy(
interfacesToVisit,
0,
interfacesToVisit = new ReferenceBinding[lastPosition * 2][],
0,
lastPosition);
interfacesToVisit[lastPosition] = itsInterfaces;
}
}
}
}
for (int i = 0; i <= lastPosition; i++) {
ReferenceBinding[] interfaces = interfacesToVisit[i];
for (int j = 0, length = interfaces.length; j < length; j++) {
interfaces[j].tagBits &= ~InterfaceVisited;
if (!hasMembers)
interfaces[j].tagBits |= HasNoMemberTypes;
}
}
}
if (!hasMembers) {
currentType = sourceType;
do {
currentType.tagBits |= HasNoMemberTypes;
} while ((currentType = currentType.superclass()) != null);
}
}
private void connectMemberTypes() {
SourceTypeBinding sourceType = referenceContext.binding;
if (sourceType.memberTypes != NoMemberTypes)
for (int i = 0, size = sourceType.memberTypes.length; i < size; i++)
((SourceTypeBinding) sourceType.memberTypes[i]).scope.connectTypeHierarchy();
}
/*
Our current belief based on available JCK tests is:
inherited member types are visible as a potential superclass.
inherited interfaces are not visible when defining a superinterface.
Error recovery story:
ensure the superclass is set to java.lang.Object if a problem is detected
resolving the superclass.
Answer false if an error was reported against the sourceType.
*/
private boolean connectSuperclass() {
SourceTypeBinding sourceType = referenceContext.binding;
if (sourceType.id == T_Object) { // handle the case of redefining java.lang.Object up front
sourceType.superclass = null;
sourceType.superInterfaces = NoSuperInterfaces;
if (referenceContext.superclass != null || referenceContext.superInterfaces != null)
problemReporter().objectCannotHaveSuperTypes(sourceType);
return true; // do not propagate Object's hierarchy problems down to every subtype
}
if (referenceContext.superclass == null) {
sourceType.superclass = getJavaLangObject();
return !detectCycle(sourceType, sourceType.superclass, null);
}
ReferenceBinding superclass = findSupertype(referenceContext.superclass);
if (superclass != null) { // is null if a cycle was detected cycle
referenceContext.superclass.resolvedType = superclass; // hold onto the problem type
if (!superclass.isValidBinding()) {
problemReporter().invalidSuperclass(sourceType, referenceContext.superclass, superclass);
} else if (superclass.isInterface()) {
problemReporter().superclassMustBeAClass(sourceType, referenceContext.superclass, superclass);
} else if (superclass.isFinal()) {
problemReporter().classExtendFinalClass(sourceType, referenceContext.superclass, superclass);
} else {
// only want to reach here when no errors are reported
sourceType.superclass = superclass;
return true;
}
}
sourceType.tagBits |= HierarchyHasProblems;
sourceType.superclass = getJavaLangObject();
if ((sourceType.superclass.tagBits & BeginHierarchyCheck) == 0)
detectCycle(sourceType, sourceType.superclass, null);
return false; // reported some error against the source type
}
/*
Our current belief based on available JCK 1.3 tests is:
inherited member types are visible as a potential superclass.
inherited interfaces are visible when defining a superinterface.
Error recovery story:
ensure the superinterfaces contain only valid visible interfaces.
Answer false if an error was reported against the sourceType.
*/
private boolean connectSuperInterfaces() {
SourceTypeBinding sourceType = referenceContext.binding;
sourceType.superInterfaces = NoSuperInterfaces;
if (referenceContext.superInterfaces == null)
return true;
if (sourceType.id == T_Object) // already handled the case of redefining java.lang.Object
return true;
boolean noProblems = true;
int length = referenceContext.superInterfaces.length;
ReferenceBinding[] interfaceBindings = new ReferenceBinding[length];
int count = 0;
nextInterface : for (int i = 0; i < length; i++) {
ReferenceBinding superInterface = findSupertype(referenceContext.superInterfaces[i]);
if (superInterface == null) { // detected cycle
noProblems = false;
continue nextInterface;
}
referenceContext.superInterfaces[i].resolvedType = superInterface; // hold onto the problem type
if (!superInterface.isValidBinding()) {
problemReporter().invalidSuperinterface(
sourceType,
referenceContext.superInterfaces[i],
superInterface);
sourceType.tagBits |= HierarchyHasProblems;
noProblems = false;
continue nextInterface;
}
// Check for a duplicate interface once the name is resolved, otherwise we may be confused (ie : a.b.I and c.d.I)
for (int k = 0; k < count; k++) {
if (interfaceBindings[k] == superInterface) {
// should this be treated as a warning?
problemReporter().duplicateSuperinterface(sourceType, referenceContext, superInterface);
continue nextInterface;
}
}
if (superInterface.isClass()) {
problemReporter().superinterfaceMustBeAnInterface(sourceType, referenceContext, superInterface);
sourceType.tagBits |= HierarchyHasProblems;
noProblems = false;
continue nextInterface;
}
// only want to reach here when no errors are reported
interfaceBindings[count++] = superInterface;
}
// hold onto all correctly resolved superinterfaces
if (count > 0) {
if (count != length)
System.arraycopy(interfaceBindings, 0, interfaceBindings = new ReferenceBinding[count], 0, count);
sourceType.superInterfaces = interfaceBindings;
}
return noProblems;
}
void connectTypeHierarchy() {
SourceTypeBinding sourceType = referenceContext.binding;
if ((sourceType.tagBits & BeginHierarchyCheck) == 0) {
boolean noProblems = true;
sourceType.tagBits |= BeginHierarchyCheck;
if (sourceType.isClass())
noProblems &= connectSuperclass();
noProblems &= connectSuperInterfaces();
sourceType.tagBits |= EndHierarchyCheck;
if (noProblems && sourceType.isHierarchyInconsistent())
problemReporter().hierarchyHasProblems(sourceType);
}
connectMemberTypes();
try {
checkForInheritedMemberTypes(sourceType);
} catch (AbortCompilation e) {
e.updateContext(referenceContext, referenceCompilationUnit().compilationResult);
throw e;
}
}
private void connectTypeHierarchyWithoutMembers() {
// must ensure the imports are resolved
if (parent instanceof CompilationUnitScope) {
if (((CompilationUnitScope) parent).imports == null)
((CompilationUnitScope) parent).checkAndSetImports();
} else if (parent instanceof ClassScope) {
// ensure that the enclosing type has already been checked
((ClassScope) parent).connectTypeHierarchyWithoutMembers();
}
// double check that the hierarchy search has not already begun...
SourceTypeBinding sourceType = referenceContext.binding;
if ((sourceType.tagBits & BeginHierarchyCheck) != 0)
return;
boolean noProblems = true;
sourceType.tagBits |= BeginHierarchyCheck;
if (sourceType.isClass())
noProblems &= connectSuperclass();
noProblems &= connectSuperInterfaces();
sourceType.tagBits |= EndHierarchyCheck;
if (noProblems && sourceType.isHierarchyInconsistent())
problemReporter().hierarchyHasProblems(sourceType);
}
// Answer whether a cycle was found between the sourceType & the superType
private boolean detectCycle(
SourceTypeBinding sourceType,
ReferenceBinding superType,
TypeReference reference) {
if (sourceType == superType) {
problemReporter().hierarchyCircularity(sourceType, superType, reference);
sourceType.tagBits |= HierarchyHasProblems;
return true;
}
if (superType.isBinaryBinding()) {
// force its superclass & superinterfaces to be found... 2 possibilities exist - the source type is included in the hierarchy of:
// - a binary type... this case MUST be caught & reported here
// - another source type... this case is reported against the other source type
boolean hasCycle = false;
if (superType.superclass() != null) {
if (sourceType == superType.superclass()) {
problemReporter().hierarchyCircularity(sourceType, superType, reference);
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems;
return true;
}
hasCycle |= detectCycle(sourceType, superType.superclass(), reference);
if ((superType.superclass().tagBits & HierarchyHasProblems) != 0) {
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems; // propagate down the hierarchy
}
}
ReferenceBinding[] itsInterfaces = superType.superInterfaces();
if (itsInterfaces != NoSuperInterfaces) {
for (int i = 0, length = itsInterfaces.length; i < length; i++) {
ReferenceBinding anInterface = itsInterfaces[i];
if (sourceType == anInterface) {
problemReporter().hierarchyCircularity(sourceType, superType, reference);
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems;
return true;
}
hasCycle |= detectCycle(sourceType, anInterface, reference);
if ((anInterface.tagBits & HierarchyHasProblems) != 0) {
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems;
}
}
}
return hasCycle;
}
if ((superType.tagBits & EndHierarchyCheck) == 0
&& (superType.tagBits & BeginHierarchyCheck) != 0) {
problemReporter().hierarchyCircularity(sourceType, superType, reference);
sourceType.tagBits |= HierarchyHasProblems;
superType.tagBits |= HierarchyHasProblems;
return true;
}
if ((superType.tagBits & BeginHierarchyCheck) == 0)
// ensure if this is a source superclass that it has already been checked
((SourceTypeBinding) superType).scope.connectTypeHierarchyWithoutMembers();
if ((superType.tagBits & HierarchyHasProblems) != 0)
sourceType.tagBits |= HierarchyHasProblems;
return false;
}
private ReferenceBinding findSupertype(TypeReference typeReference) {
try {
typeReference.aboutToResolve(this); // allows us to trap completion & selection nodes
char[][] compoundName = typeReference.getTypeName();
compilationUnitScope().recordQualifiedReference(compoundName);
SourceTypeBinding sourceType = referenceContext.binding;
int size = compoundName.length;
int n = 1;
ReferenceBinding superType;
// resolve the first name of the compoundName
if (CharOperation.equals(compoundName[0], sourceType.sourceName)) {
superType = sourceType;
// match against the sourceType even though nested members cannot be supertypes
} else {
Binding typeOrPackage = parent.getTypeOrPackage(compoundName[0], TYPE | PACKAGE);
if (typeOrPackage == null || !typeOrPackage.isValidBinding())
return new ProblemReferenceBinding(
compoundName[0],
typeOrPackage == null ? NotFound : typeOrPackage.problemId());
boolean checkVisibility = false;
for (; n < size; n++) {
if (!(typeOrPackage instanceof PackageBinding))
break;
PackageBinding packageBinding = (PackageBinding) typeOrPackage;
typeOrPackage = packageBinding.getTypeOrPackage(compoundName[n]);
if (typeOrPackage == null || !typeOrPackage.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, n + 1),
typeOrPackage == null ? NotFound : typeOrPackage.problemId());
checkVisibility = true;
}
// convert to a ReferenceBinding
if (typeOrPackage instanceof PackageBinding) // error, the compoundName is a packageName
return new ProblemReferenceBinding(CharOperation.subarray(compoundName, 0, n), NotFound);
superType = (ReferenceBinding) typeOrPackage;
compilationUnitScope().recordTypeReference(superType); // to record supertypes
if (checkVisibility
&& n == size) { // if we're finished and know the final supertype then check visibility
if (!superType.canBeSeenBy(sourceType.fPackage))
// its a toplevel type so just check package access
return new ProblemReferenceBinding(CharOperation.subarray(compoundName, 0, n), superType, NotVisible);
}
}
// at this point we know we have a type but we have to look for cycles
while (true) {
// must detect cycles & force connection up the hierarchy... also handle cycles with binary types.
// must be guaranteed that the superType knows its entire hierarchy
if (detectCycle(sourceType, superType, typeReference))
return null; // cycle error was already reported
if (n >= size)
break;
// retrieve the next member type
char[] typeName = compoundName[n++];
superType = findMemberType(typeName, superType);
if (superType == null)
return new ProblemReferenceBinding(CharOperation.subarray(compoundName, 0, n), NotFound);
if (!superType.isValidBinding()) {
superType.compoundName = CharOperation.subarray(compoundName, 0, n);
return superType;
}
}
return superType;
} catch (AbortCompilation e) {
e.updateContext(typeReference, referenceCompilationUnit().compilationResult);
throw e;
}
}
/* Answer the problem reporter to use for raising new problems.
*
* Note that as a side-effect, this updates the current reference context
* (unit, type or method) in case the problem handler decides it is necessary
* to abort.
*/
public ProblemReporter problemReporter() {
MethodScope outerMethodScope;
if ((outerMethodScope = outerMostMethodScope()) == null) {
ProblemReporter problemReporter = referenceCompilationUnit().problemReporter;
problemReporter.referenceContext = referenceContext;
return problemReporter;
}
return outerMethodScope.problemReporter();
}
/* Answer the reference type of this scope.
* It is the nearest enclosing type of this scope.
*/
public TypeDeclaration referenceType() {
return referenceContext;
}
public String toString() {
if (referenceContext != null)
return "--- Class Scope ---\n\n" //$NON-NLS-1$
+ referenceContext.binding.toString();
return "--- Class Scope ---\n\n Binding not initialized" ; //$NON-NLS-1$
}
}