blob: 139474f7abab9151bec60ac471a6e44869c53306 [file] [log] [blame]
-------------------------------------------------------------------------------
-- Copyright (c) 2006-2013 Fabien Fleutot and others.
--
-- All rights reserved.
--
-- This program and the accompanying materials are made available
-- under the terms of the Eclipse Public License v1.0 which
-- accompanies this distribution, and is available at
-- http://www.eclipse.org/legal/epl-v10.html
--
-- This program and the accompanying materials are also made available
-- under the terms of the MIT public license which accompanies this
-- distribution, and is available at http://www.lua.org/license.html
--
-- Contributors:
-- Fabien Fleutot - API and implementation
--
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
-- Code walkers
--
-- This library offers a generic way to write AST transforming
-- functions. Macros can take bits of AST as parameters and generate a
-- more complex AST with them; but modifying an AST a posteriori is
-- much more difficult; typical tasks requiring code walking are
-- transformation such as lazy evaluation or Continuation Passing
-- Style, but more mundane operations are required in more macros than
-- one would thing, such as "transform all returns which aren't inside
-- a nested function into an error throwing".
--
-- AST walking is an intrinsically advanced operation, and the
-- interface of this library, although it tries to remain as simple as
-- possible, is not trivial. You'll probably need to write a couple of
-- walkers with it before feeling comfortable.
--
--
-- We deal here with 3 important kinds of AST: statements, expressions
-- and blocks. Code walkers for these three kinds for AST are called
-- [walk.stat (cfg, ast)], [walk.expr (cfg, ast)] and [walk.block
-- (cfg, ast)] respectively. the [cfg] parameter describes what shall
-- happen as the AST is traversed by the walker, and [ast] is the tree
-- itself.
--
-- An aparte to fellow functional programmers: although Lua has
-- got all the features that constitute a functional language, its
-- heart, and in particular it table data, is imperative. It's often
-- asking for trouble to work against the host language's nature, so
-- code walkers are imperative, cope with it. Or use table.deep_copy()
-- if you don't want issues with shared state.
--
-- Since walkers are imperative (i.e. they transform the tree in
-- place, rather than returning a fresh variant of it), you'll often
-- want to override a node, i.e. keep its "pointer identity", but
-- replace its content with a new one; this is done by
-- table.override(), and is conveniently abbreviated as
-- "target <- new_content".
--
-- So, [cfg] can contain a series of sub-tables fields 'expr', 'stat',
-- 'block'. each of them can contain a function up() and/or a function
-- down().
--
-- * down() is called when the walker starts visiting a node of the
-- matching kind, i.e. before any of its sub-nodes have been
-- visited. down() is allowed to return either the string "break",
-- which means "don't go further down this tree, don't try to walk
-- its children", or nil, i.e. "please process with the children
-- nodes".
--
-- There are two reasons why you might want down() to return
-- "break": either because you really weren't interested into the
-- children nodes,or because you wanted to walk through them in a
-- special way, and down() already performed this special walking.
--
-- * up() is called just before the node is left, i.e. after all of
-- its children nodes have been completely parsed, down and up. This
-- is a good place to put treatments which rely on sub-nodes being
-- already treated. Notice that if down() returned 'break', up() is
-- run immediately after.
--
-- In previous versions of this library, there were plenty of fancy
-- configurable ways to decide whether an up() or down() functions
-- would be triggered or not. Experience suggested that the best way
-- is to keep it simpler, as done by the current design: the functions
-- in sub-table expr are run on each expression node, and ditto for
-- stat and block; the user is expected to use the pattern matching
-- extension to decide whether to act or not on a given node.
--
-- Advanced features
-- =================
--
-- The version above is a strict subset of the truth: there are a
-- couple of other, more advanced features in the library.
--
-- Paths in visitor functions
-- --------------------------
-- First, up() and down() don't take only one node as a parameter, but
-- a series thereof: all the nested expr/stat/block nodes on the way
-- up to the ast's root. For instance, when a walker works on
-- +{ foo(bar*2+1) } an is on the node +{2}, up() and down() are called
-- with arguments (+{bar*2}, +{bar*2+1}, +{foo(bar*2+1)}).
--
-- `Call and `Invoke as statements
-- -------------------------------
-- `Call and `Invoke are normally expressions, but they can also
-- appear as statements. In this case, the cfg.expr.xxx() visitors
-- aren't called on them. Sometimes you want to consider tham as
-- expressions, sometimes not, and it's much easier to add a special
-- case in cfg.stat.xxx() visitors than to determine whether we're in
-- a statament's context in cfg.expr.xxx(),
--
-- Extra walkers
-- -------------
-- There are some second class walkers: walk.expr_list() and walk.guess().
--
-- * The first one walks through a list of expressions. Although used
-- internally by the other walkers, it remains a second class
-- citizen: the list it works on won't appear in the path of nested
-- ASTs that's passed to up() and down(). This design choice has
-- been made because there's no clear definition of what is or isn't
-- an expr list in an AST, and anyway such lists are probably not
-- part of metacoders' mental image of an AST, so it's been thought
-- best to let people pretend they don't exist.
--
-- * walk.guess() tries to guess the type of the AST it receives,
-- according to its tag, and runs the appropriate walker. Node which
-- can be both stats and exprs (`Call and `Invoke) are considered as
-- expr.
--
-- These three walkers, although used internally by the other walkers,
-- remain second class citizens: the lists they work on won't appear
-- in the path of nested ASTs that's passed to up() and down().
--
-- Tag dictionaries
-- ----------------
-- There are two public dictionaries, walk.tags.stat and
-- walk.tags.expr, which keep the set of all tags that can start a
-- statement or an expression AST. They're used by walk.guess, and
-- users sometimes need them as well, so they've been kept available.
--
-- Binder visitor
-- --------------
-- Finally, there's one last field in [cfg]: binder(). This function
-- is called on identifiers in a binder position, i.e. `Id{ } nodes
-- which create a scoped local variable, in `Function, `Fornum, `Local
-- etc. The main use case for that function is to keep track of
-- variables, captures, etc. and perform alpha conversions. In many
-- cases that work is best done through the library 'walk.id', which
-- understands the notions of scope, free variable, bound variable
-- etc.
--
-- Binder visitors are called just before the variable's scope starts,
-- e.g. they're called after the right-hand-side has been visited in a
-- `Local node, but before in a `Localrec node.
--
-- TODO: document scopes, relaxed cfg descriptions
-- -----------------------------------------------
--
-- Examples of cfg structures:
--
-- { Id = f1, Local = f2 }
-- f
-- { up = f1, down = f2 }
-- { scope = { up = f1, down = f2 }, up = f1, down = f2 }
-- { stat = f1, expr = { up = f1 } }
--
--
-------------------------------------------------------------------------------
-{ extension ('match', ...) }
walk = { traverse = { }; tags = { }; debug = false }
-------------------------------------------------------------------------------
-- Standard tags: can be used to guess the type of an AST, or to check
-- that the type of an AST is respected.
-------------------------------------------------------------------------------
walk.tags.stat = table.transpose{
'Do', 'Set', 'While', 'Repeat', 'Local', 'Localrec', 'Return',
'Fornum', 'Forin', 'If', 'Break', 'Goto', 'Label',
'Call', 'Invoke' }
walk.tags.expr = table.transpose{
'Paren', 'Call', 'Invoke', 'Index', 'Op', 'Function', 'Stat',
'Table', 'Nil', 'Dots', 'True', 'False', 'Number', 'String', 'Id' }
local function scope (cfg, dir)
local h = cfg.scope and cfg.scope[dir]
if h then h() end
end
--------------------------------------------------------------------------------
-- These [walk.traverse.xxx()] functions are in charge of actually going through
-- ASTs. At each node, they make sure to call the appropriate walker.
--------------------------------------------------------------------------------
function walk.traverse.stat (cfg, x, ...)
if walk.debug then printf("traverse stat %s", table.tostring(x)) end
local log = {...}
local B = |y| walk.block (cfg, y, x, unpack(log))
local S = |y| walk.stat (cfg, y, x, unpack(log))
local E = |y| walk.expr (cfg, y, x, unpack(log))
local EL = |y| walk.expr_list (cfg, y, x, unpack(log))
local I = |y| walk.binder_list (cfg, y, x, unpack(log))
local function BS(y)
scope (cfg, 'down'); B(y); scope (cfg, 'up')
end
match x with
| {...} if x.tag == nil -> for y in ivalues(x) do walk.stat(cfg, y, ...) end
-- no tag --> node not inserted in the history log
| `Do{...} -> BS(x)
| `Set{ lhs, rhs } -> EL(lhs); EL(rhs)
| `While{ cond, body } -> E(cond); BS(body)
| `Repeat{ body, cond } -> scope(cfg, 'down'); B(body); E(cond); scope(cfg, 'up')
| `Local{ lhs } -> I(lhs)
| `Local{ lhs, rhs } -> EL(rhs); I(lhs)
| `Localrec{ lhs, rhs } -> I(lhs); EL(rhs)
| `Fornum{ i, a, b, body } -> E(a); E(b); I{i}; BS(body)
| `Fornum{ i, a, b, c, body } -> E(a); E(b); E(c); I{i}; BS(body)
| `Forin{ i, rhs, body } -> EL(rhs); I(i); BS(body)
| `If{...} -> for i=1, #x-1, 2 do E(x[i]); BS(x[i+1]) end
if #x%2 == 1 then BS(x[#x]) end
| `Call{...}|`Invoke{...}|`Return{...} -> EL(x)
| `Break | `Goto{ _ } | `Label{ _ } -> -- nothing
| { tag=tag, ...} if walk.tags.stat[tag]->
walk.malformed (cfg, x, unpack (log))
| _ ->
walk.unknown (cfg, x, unpack (log))
end
end
function walk.traverse.expr (cfg, x, ...)
if walk.debug then printf("traverse expr %s", table.tostring(x)) end
local log = {...}
local B = |y| walk.block (cfg, y, x, unpack(log))
local S = |y| walk.stat (cfg, y, x, unpack(log))
local E = |y| walk.expr (cfg, y, x, unpack(log))
local EL = |y| walk.expr_list (cfg, y, x, unpack(log))
local I = |y| walk.binder_list (cfg, y, x, unpack(log))
match x with
| `Paren{ e } -> E(e)
| `Call{...} | `Invoke{...} -> EL(x)
| `Index{ a, b } -> E(a); E(b)
| `Op{ opid, ... } -> E(x[2]); if #x==3 then E(x[3]) end
| `Function{ params, body } -> I(params); scope(cfg, 'down'); B(body); scope (cfg, 'in')
| `Stat{ b, e } -> scope(cfg, 'down'); B(b); E(e); scope (cfg, 'in')
| `Table{ ... } ->
for i = 1, #x do match x[i] with
| `Pair{ k, v } -> E(k); E(v)
| v -> E(v)
end end
|`Nil|`Dots|`True|`False|`Number{_}|`String{_}|`Id{_} -> -- nothing
| { tag=tag, ...} if walk.tags.expr[tag]->
walk.malformed (cfg, x, unpack (log))
| _ ->
walk.unknown (cfg, x, unpack (log))
end
end
function walk.traverse.block (cfg, x, ...)
assert(type(x)=='table', "traverse.block() expects a table")
for _, y in ipairs(x) do walk.stat(cfg, y, x, ...) end
end
function walk.traverse.expr_list (cfg, x, ...)
assert(type(x)=='table', "traverse.expr_list() expects a table")
-- x doesn't appear in the log
for _, y in ipairs(x) do walk.expr(cfg, y, ...) end
end
function walk.malformed(cfg, x, ...)
local f = cfg.malformed or cfg.error
if f then f(x, ...) else
error ("Malformed node of tag "..(x.tag or '(nil)'))
end
end
function walk.unknown(cfg, x, ...)
local f = cfg.unknown or cfg.error
if f then f(x, ...) else
error ("Unknown node tag "..(x.tag or '(nil)'))
end
end
----------------------------------------------------------------------
-- Generic walker generator.
-- * if `cfg' has an entry matching the tree name, use this entry
-- * if not, try to use the entry whose name matched the ast kind
-- * if an entry is a table, look for 'up' and 'down' entries
-- * if it is a function, consider it as a `down' traverser.
----------------------------------------------------------------------
local walker_builder = |cfg_field, traverse| function (cfg, x, ...)
local sub_cfg = type (x)=='table' and x.tag and cfg[x.tag]
or cfg[cfg_field] or cfg
local broken, down, up = false
if type(sub_cfg)=='table' then
down, up = sub_cfg.down, sub_cfg.up
elseif type(sub_cfg)=='function' or sub_cfg=='break' then
down, up = sub_cfg, nil
else error "Invalid walk config" end
if down then
if down=='break' then broken='break'
else broken = down (x, ...) end
assert(not broken or broken=='break',
"Map functions must return 'break' or nil")
end
if not broken and traverse then traverse (cfg, x, ...) end
if up then up (x, ...) end
end
----------------------------------------------------------------------
-- Declare [walk.stat], [walk.expr], [walk.block] and [walk.expr_list]
----------------------------------------------------------------------
for _, w in ipairs{ "stat", "expr", "block", "expr_list" } do
walk[w] = walker_builder (w, walk.traverse[w])
end
----------------------------------------------------------------------
-- Walk a list of `Id{...} (mainly a helper function actually).
----------------------------------------------------------------------
function walk.binder_list (cfg, x, ...)
local f = cfg.binder
if f then for _, v in ipairs(x) do f(v, ...) end end
end
----------------------------------------------------------------------
-- Tries to guess the type of the AST then choose the right walkker.
----------------------------------------------------------------------
function walk.guess (cfg, x, ...)
assert(type(x)=='table', "arg #2 in a walker must be an AST")
if walk.tags.expr[x.tag] then return walk.expr(cfg, x, ...) end
if walk.tags.stat[x.tag] then return walk.stat(cfg, x, ...) end
if not x.tag then return walk.block(cfg, x, ...) end
error ("Can't guess the AST type from tag "..(x.tag or '<none>'))
end
return walk