blob: b0095592512b9f8abd84c8e9580c139fc010f0eb [file] [log] [blame]
package org.apache.lucene.index.memory;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.IOException;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;
import org.apache.lucene.analysis.tokenattributes.PositionIncrementAttribute;
import org.apache.lucene.analysis.tokenattributes.TermToBytesRefAttribute;
import org.apache.lucene.index.AtomicReader;
import org.apache.lucene.index.AtomicReaderContext;
import org.apache.lucene.index.BinaryDocValues;
import org.apache.lucene.index.DocsAndPositionsEnum;
import org.apache.lucene.index.DocsEnum;
import org.apache.lucene.index.FieldInfo.IndexOptions;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.FieldInfos;
import org.apache.lucene.index.FieldInvertState;
import org.apache.lucene.index.Fields;
import org.apache.lucene.index.NumericDocValues;
import org.apache.lucene.index.OrdTermState;
import org.apache.lucene.index.SortedDocValues;
import org.apache.lucene.index.SortedNumericDocValues;
import org.apache.lucene.index.SortedSetDocValues;
import org.apache.lucene.index.StoredFieldVisitor;
import org.apache.lucene.index.TermState;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.Collector;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.Scorer;
import org.apache.lucene.search.similarities.Similarity;
import org.apache.lucene.store.RAMDirectory; // for javadocs
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.Bits;
import org.apache.lucene.util.ByteBlockPool;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.BytesRefHash.DirectBytesStartArray;
import org.apache.lucene.util.BytesRefHash;
import org.apache.lucene.util.Counter;
import org.apache.lucene.util.IntBlockPool.SliceReader;
import org.apache.lucene.util.IntBlockPool.SliceWriter;
import org.apache.lucene.util.IntBlockPool;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.RecyclingByteBlockAllocator;
import org.apache.lucene.util.RecyclingIntBlockAllocator;
/**
* High-performance single-document main memory Apache Lucene fulltext search index.
*
* <h4>Overview</h4>
*
* This class is a replacement/substitute for a large subset of
* {@link RAMDirectory} functionality. It is designed to
* enable maximum efficiency for on-the-fly matchmaking combining structured and
* fuzzy fulltext search in realtime streaming applications such as Nux XQuery based XML
* message queues, publish-subscribe systems for Blogs/newsfeeds, text chat, data acquisition and
* distribution systems, application level routers, firewalls, classifiers, etc.
* Rather than targeting fulltext search of infrequent queries over huge persistent
* data archives (historic search), this class targets fulltext search of huge
* numbers of queries over comparatively small transient realtime data (prospective
* search).
* For example as in
* <pre class="prettyprint">
* float score = search(String text, Query query)
* </pre>
* <p>
* Each instance can hold at most one Lucene "document", with a document containing
* zero or more "fields", each field having a name and a fulltext value. The
* fulltext value is tokenized (split and transformed) into zero or more index terms
* (aka words) on <code>addField()</code>, according to the policy implemented by an
* Analyzer. For example, Lucene analyzers can split on whitespace, normalize to lower case
* for case insensitivity, ignore common terms with little discriminatory value such as "he", "in", "and" (stop
* words), reduce the terms to their natural linguistic root form such as "fishing"
* being reduced to "fish" (stemming), resolve synonyms/inflexions/thesauri
* (upon indexing and/or querying), etc. For details, see
* <a target="_blank" href="http://today.java.net/pub/a/today/2003/07/30/LuceneIntro.html">Lucene Analyzer Intro</a>.
* <p>
* Arbitrary Lucene queries can be run against this class - see <a target="_blank"
* href="{@docRoot}/../queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description">
* Lucene Query Syntax</a>
* as well as <a target="_blank"
* href="http://today.java.net/pub/a/today/2003/11/07/QueryParserRules.html">Query Parser Rules</a>.
* Note that a Lucene query selects on the field names and associated (indexed)
* tokenized terms, not on the original fulltext(s) - the latter are not stored
* but rather thrown away immediately after tokenization.
* <p>
* For some interesting background information on search technology, see Bob Wyman's
* <a target="_blank"
* href="http://bobwyman.pubsub.com/main/2005/05/mary_hodder_poi.html">Prospective Search</a>,
* Jim Gray's
* <a target="_blank" href="http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=293&page=4">
* A Call to Arms - Custom subscriptions</a>, and Tim Bray's
* <a target="_blank"
* href="http://www.tbray.org/ongoing/When/200x/2003/07/30/OnSearchTOC">On Search, the Series</a>.
*
*
* <h4>Example Usage</h4>
*
* <pre class="prettyprint">
* Analyzer analyzer = new SimpleAnalyzer(version);
* MemoryIndex index = new MemoryIndex();
* index.addField("content", "Readings about Salmons and other select Alaska fishing Manuals", analyzer);
* index.addField("author", "Tales of James", analyzer);
* QueryParser parser = new QueryParser(version, "content", analyzer);
* float score = index.search(parser.parse("+author:james +salmon~ +fish* manual~"));
* if (score &gt; 0.0f) {
* System.out.println("it's a match");
* } else {
* System.out.println("no match found");
* }
* System.out.println("indexData=" + index.toString());
* </pre>
*
*
* <h4>Example XQuery Usage</h4>
*
* <pre class="prettyprint">
* (: An XQuery that finds all books authored by James that have something to do with "salmon fishing manuals", sorted by relevance :)
* declare namespace lucene = "java:nux.xom.pool.FullTextUtil";
* declare variable $query := "+salmon~ +fish* manual~"; (: any arbitrary Lucene query can go here :)
*
* for $book in /books/book[author="James" and lucene:match(abstract, $query) > 0.0]
* let $score := lucene:match($book/abstract, $query)
* order by $score descending
* return $book
* </pre>
*
*
* <h4>No thread safety guarantees</h4>
*
* An instance can be queried multiple times with the same or different queries,
* but an instance is not thread-safe. If desired use idioms such as:
* <pre class="prettyprint">
* MemoryIndex index = ...
* synchronized (index) {
* // read and/or write index (i.e. add fields and/or query)
* }
* </pre>
*
*
* <h4>Performance Notes</h4>
*
* Internally there's a new data structure geared towards efficient indexing
* and searching, plus the necessary support code to seamlessly plug into the Lucene
* framework.
* <p>
* This class performs very well for very small texts (e.g. 10 chars)
* as well as for large texts (e.g. 10 MB) and everything in between.
* Typically, it is about 10-100 times faster than <code>RAMDirectory</code>.
* Note that <code>RAMDirectory</code> has particularly
* large efficiency overheads for small to medium sized texts, both in time and space.
* Indexing a field with N tokens takes O(N) in the best case, and O(N logN) in the worst
* case. Memory consumption is probably larger than for <code>RAMDirectory</code>.
* <p>
* Example throughput of many simple term queries over a single MemoryIndex:
* ~500000 queries/sec on a MacBook Pro, jdk 1.5.0_06, server VM.
* As always, your mileage may vary.
* <p>
* If you're curious about
* the whereabouts of bottlenecks, run java 1.5 with the non-perturbing '-server
* -agentlib:hprof=cpu=samples,depth=10' flags, then study the trace log and
* correlate its hotspot trailer with its call stack headers (see <a
* target="_blank"
* href="http://java.sun.com/developer/technicalArticles/Programming/HPROF.html">
* hprof tracing </a>).
*
*/
public class MemoryIndex {
/** info for each field: Map<String fieldName, Info field> */
private final HashMap<String,Info> fields = new HashMap<>();
/** fields sorted ascending by fieldName; lazily computed on demand */
private transient Map.Entry<String,Info>[] sortedFields;
private final boolean storeOffsets;
private static final boolean DEBUG = false;
private final ByteBlockPool byteBlockPool;
private final IntBlockPool intBlockPool;
// private final IntBlockPool.SliceReader postingsReader;
private final IntBlockPool.SliceWriter postingsWriter;
private HashMap<String,FieldInfo> fieldInfos = new HashMap<>();
private Counter bytesUsed;
/**
* Sorts term entries into ascending order; also works for
* Arrays.binarySearch() and Arrays.sort()
*/
private static final Comparator<Object> termComparator = new Comparator<Object>() {
@Override
@SuppressWarnings({"unchecked","rawtypes"})
public int compare(Object o1, Object o2) {
if (o1 instanceof Map.Entry<?,?>) o1 = ((Map.Entry<?,?>) o1).getKey();
if (o2 instanceof Map.Entry<?,?>) o2 = ((Map.Entry<?,?>) o2).getKey();
if (o1 == o2) return 0;
return ((Comparable) o1).compareTo((Comparable) o2);
}
};
/**
* Constructs an empty instance.
*/
public MemoryIndex() {
this(false);
}
/**
* Constructs an empty instance that can optionally store the start and end
* character offset of each token term in the text. This can be useful for
* highlighting of hit locations with the Lucene highlighter package.
* Protected until the highlighter package matures, so that this can actually
* be meaningfully integrated.
*
* @param storeOffsets
* whether or not to store the start and end character offset of
* each token term in the text
*/
public MemoryIndex(boolean storeOffsets) {
this(storeOffsets, 0);
}
/**
* Expert: This constructor accepts an upper limit for the number of bytes that should be reused if this instance is {@link #reset()}.
* @param storeOffsets <code>true</code> if offsets should be stored
* @param maxReusedBytes the number of bytes that should remain in the internal memory pools after {@link #reset()} is called
*/
MemoryIndex(boolean storeOffsets, long maxReusedBytes) {
this.storeOffsets = storeOffsets;
this.bytesUsed = Counter.newCounter();
final int maxBufferedByteBlocks = (int)((maxReusedBytes/2) / ByteBlockPool.BYTE_BLOCK_SIZE );
final int maxBufferedIntBlocks = (int) ((maxReusedBytes - (maxBufferedByteBlocks*ByteBlockPool.BYTE_BLOCK_SIZE))/(IntBlockPool.INT_BLOCK_SIZE * RamUsageEstimator.NUM_BYTES_INT));
assert (maxBufferedByteBlocks * ByteBlockPool.BYTE_BLOCK_SIZE) + (maxBufferedIntBlocks * IntBlockPool.INT_BLOCK_SIZE * RamUsageEstimator.NUM_BYTES_INT) <= maxReusedBytes;
byteBlockPool = new ByteBlockPool(new RecyclingByteBlockAllocator(ByteBlockPool.BYTE_BLOCK_SIZE, maxBufferedByteBlocks, bytesUsed));
intBlockPool = new IntBlockPool(new RecyclingIntBlockAllocator(IntBlockPool.INT_BLOCK_SIZE, maxBufferedIntBlocks, bytesUsed));
postingsWriter = new SliceWriter(intBlockPool);
}
/**
* Convenience method; Tokenizes the given field text and adds the resulting
* terms to the index; Equivalent to adding an indexed non-keyword Lucene
* {@link org.apache.lucene.document.Field} that is tokenized, not stored,
* termVectorStored with positions (or termVectorStored with positions and offsets),
*
* @param fieldName
* a name to be associated with the text
* @param text
* the text to tokenize and index.
* @param analyzer
* the analyzer to use for tokenization
*/
public void addField(String fieldName, String text, Analyzer analyzer) {
if (fieldName == null)
throw new IllegalArgumentException("fieldName must not be null");
if (text == null)
throw new IllegalArgumentException("text must not be null");
if (analyzer == null)
throw new IllegalArgumentException("analyzer must not be null");
TokenStream stream;
try {
stream = analyzer.tokenStream(fieldName, text);
} catch (IOException ex) {
throw new RuntimeException(ex);
}
addField(fieldName, stream, 1.0f, analyzer.getPositionIncrementGap(fieldName), analyzer.getOffsetGap(fieldName));
}
/**
* Convenience method; Creates and returns a token stream that generates a
* token for each keyword in the given collection, "as is", without any
* transforming text analysis. The resulting token stream can be fed into
* {@link #addField(String, TokenStream)}, perhaps wrapped into another
* {@link org.apache.lucene.analysis.TokenFilter}, as desired.
*
* @param keywords
* the keywords to generate tokens for
* @return the corresponding token stream
*/
public <T> TokenStream keywordTokenStream(final Collection<T> keywords) {
// TODO: deprecate & move this method into AnalyzerUtil?
if (keywords == null)
throw new IllegalArgumentException("keywords must not be null");
return new TokenStream() {
private Iterator<T> iter = keywords.iterator();
private int start = 0;
private final CharTermAttribute termAtt = addAttribute(CharTermAttribute.class);
private final OffsetAttribute offsetAtt = addAttribute(OffsetAttribute.class);
@Override
public boolean incrementToken() {
if (!iter.hasNext()) return false;
T obj = iter.next();
if (obj == null)
throw new IllegalArgumentException("keyword must not be null");
String term = obj.toString();
clearAttributes();
termAtt.setEmpty().append(term);
offsetAtt.setOffset(start, start+termAtt.length());
start += term.length() + 1; // separate words by 1 (blank) character
return true;
}
};
}
/**
* Equivalent to <code>addField(fieldName, stream, 1.0f)</code>.
*
* @param fieldName
* a name to be associated with the text
* @param stream
* the token stream to retrieve tokens from
*/
public void addField(String fieldName, TokenStream stream) {
addField(fieldName, stream, 1.0f);
}
/**
* Iterates over the given token stream and adds the resulting terms to the index;
* Equivalent to adding a tokenized, indexed, termVectorStored, unstored,
* Lucene {@link org.apache.lucene.document.Field}.
* Finally closes the token stream. Note that untokenized keywords can be added with this method via
* {@link #keywordTokenStream(Collection)}, the Lucene <code>KeywordTokenizer</code> or similar utilities.
*
* @param fieldName
* a name to be associated with the text
* @param stream
* the token stream to retrieve tokens from.
* @param boost
* the boost factor for hits for this field
*
* @see org.apache.lucene.document.Field#setBoost(float)
*/
public void addField(String fieldName, TokenStream stream, float boost) {
addField(fieldName, stream, boost, 0);
}
/**
* Iterates over the given token stream and adds the resulting terms to the index;
* Equivalent to adding a tokenized, indexed, termVectorStored, unstored,
* Lucene {@link org.apache.lucene.document.Field}.
* Finally closes the token stream. Note that untokenized keywords can be added with this method via
* {@link #keywordTokenStream(Collection)}, the Lucene <code>KeywordTokenizer</code> or similar utilities.
*
* @param fieldName
* a name to be associated with the text
* @param stream
* the token stream to retrieve tokens from.
* @param boost
* the boost factor for hits for this field
*
* @param positionIncrementGap
* the position increment gap if fields with the same name are added more than once
*
*
* @see org.apache.lucene.document.Field#setBoost(float)
*/
public void addField(String fieldName, TokenStream stream, float boost, int positionIncrementGap) {
addField(fieldName, stream, boost, positionIncrementGap, 1);
}
/**
* Iterates over the given token stream and adds the resulting terms to the index;
* Equivalent to adding a tokenized, indexed, termVectorStored, unstored,
* Lucene {@link org.apache.lucene.document.Field}.
* Finally closes the token stream. Note that untokenized keywords can be added with this method via
* {@link #keywordTokenStream(Collection)}, the Lucene <code>KeywordTokenizer</code> or similar utilities.
*
*
* @param fieldName
* a name to be associated with the text
* @param stream
* the token stream to retrieve tokens from.
* @param boost
* the boost factor for hits for this field
* @param positionIncrementGap
* the position increment gap if fields with the same name are added more than once
* @param offsetGap
* the offset gap if fields with the same name are added more than once
* @see org.apache.lucene.document.Field#setBoost(float)
*/
public void addField(String fieldName, TokenStream stream, float boost, int positionIncrementGap, int offsetGap) {
try {
if (fieldName == null)
throw new IllegalArgumentException("fieldName must not be null");
if (stream == null)
throw new IllegalArgumentException("token stream must not be null");
if (boost <= 0.0f)
throw new IllegalArgumentException("boost factor must be greater than 0.0");
int numTokens = 0;
int numOverlapTokens = 0;
int pos = -1;
final BytesRefHash terms;
final SliceByteStartArray sliceArray;
Info info = null;
long sumTotalTermFreq = 0;
int offset = 0;
if ((info = fields.get(fieldName)) != null) {
numTokens = info.numTokens;
numOverlapTokens = info.numOverlapTokens;
pos = info.lastPosition + positionIncrementGap;
offset = info.lastOffset + offsetGap;
terms = info.terms;
boost *= info.boost;
sliceArray = info.sliceArray;
sumTotalTermFreq = info.sumTotalTermFreq;
} else {
sliceArray = new SliceByteStartArray(BytesRefHash.DEFAULT_CAPACITY);
terms = new BytesRefHash(byteBlockPool, BytesRefHash.DEFAULT_CAPACITY, sliceArray);
}
if (!fieldInfos.containsKey(fieldName)) {
fieldInfos.put(fieldName,
new FieldInfo(fieldName, true, fieldInfos.size(), false, false, false, this.storeOffsets ? IndexOptions.DOCS_AND_FREQS_AND_POSITIONS_AND_OFFSETS : IndexOptions.DOCS_AND_FREQS_AND_POSITIONS , null, null, -1, null));
}
TermToBytesRefAttribute termAtt = stream.getAttribute(TermToBytesRefAttribute.class);
PositionIncrementAttribute posIncrAttribute = stream.addAttribute(PositionIncrementAttribute.class);
OffsetAttribute offsetAtt = stream.addAttribute(OffsetAttribute.class);
BytesRef ref = termAtt.getBytesRef();
stream.reset();
while (stream.incrementToken()) {
termAtt.fillBytesRef();
// if (DEBUG) System.err.println("token='" + term + "'");
numTokens++;
final int posIncr = posIncrAttribute.getPositionIncrement();
if (posIncr == 0)
numOverlapTokens++;
pos += posIncr;
int ord = terms.add(ref);
if (ord < 0) {
ord = (-ord) - 1;
postingsWriter.reset(sliceArray.end[ord]);
} else {
sliceArray.start[ord] = postingsWriter.startNewSlice();
}
sliceArray.freq[ord]++;
sumTotalTermFreq++;
if (!storeOffsets) {
postingsWriter.writeInt(pos);
} else {
postingsWriter.writeInt(pos);
postingsWriter.writeInt(offsetAtt.startOffset() + offset);
postingsWriter.writeInt(offsetAtt.endOffset() + offset);
}
sliceArray.end[ord] = postingsWriter.getCurrentOffset();
}
stream.end();
// ensure infos.numTokens > 0 invariant; needed for correct operation of terms()
if (numTokens > 0) {
fields.put(fieldName, new Info(terms, sliceArray, numTokens, numOverlapTokens, boost, pos, offsetAtt.endOffset() + offset, sumTotalTermFreq));
sortedFields = null; // invalidate sorted view, if any
}
} catch (Exception e) { // can never happen
throw new RuntimeException(e);
} finally {
try {
if (stream != null) {
stream.close();
}
} catch (IOException e2) {
throw new RuntimeException(e2);
}
}
}
/**
* Creates and returns a searcher that can be used to execute arbitrary
* Lucene queries and to collect the resulting query results as hits.
*
* @return a searcher
*/
public IndexSearcher createSearcher() {
MemoryIndexReader reader = new MemoryIndexReader();
IndexSearcher searcher = new IndexSearcher(reader); // ensures no auto-close !!
reader.setSearcher(searcher); // to later get hold of searcher.getSimilarity()
return searcher;
}
/**
* Convenience method that efficiently returns the relevance score by
* matching this index against the given Lucene query expression.
*
* @param query
* an arbitrary Lucene query to run against this index
* @return the relevance score of the matchmaking; A number in the range
* [0.0 .. 1.0], with 0.0 indicating no match. The higher the number
* the better the match.
*
*/
public float search(Query query) {
if (query == null)
throw new IllegalArgumentException("query must not be null");
IndexSearcher searcher = createSearcher();
try {
final float[] scores = new float[1]; // inits to 0.0f (no match)
searcher.search(query, new Collector() {
private Scorer scorer;
@Override
public void collect(int doc) throws IOException {
scores[0] = scorer.score();
}
@Override
public void setScorer(Scorer scorer) {
this.scorer = scorer;
}
@Override
public boolean acceptsDocsOutOfOrder() {
return true;
}
@Override
public void setNextReader(AtomicReaderContext context) { }
});
float score = scores[0];
return score;
} catch (IOException e) { // can never happen (RAMDirectory)
throw new RuntimeException(e);
} finally {
// searcher.close();
/*
* Note that it is harmless and important for good performance to
* NOT close the index reader!!! This avoids all sorts of
* unnecessary baggage and locking in the Lucene IndexReader
* superclass, all of which is completely unnecessary for this main
* memory index data structure without thread-safety claims.
*
* Wishing IndexReader would be an interface...
*
* Actually with the new tight createSearcher() API auto-closing is now
* made impossible, hence searcher.close() would be harmless and also
* would not degrade performance...
*/
}
}
/** sorts into ascending order (on demand), reusing memory along the way */
private void sortFields() {
if (sortedFields == null) sortedFields = sort(fields);
}
/** returns a view of the given map's entries, sorted ascending by key */
private static <K,V> Map.Entry<K,V>[] sort(HashMap<K,V> map) {
int size = map.size();
@SuppressWarnings("unchecked")
Map.Entry<K,V>[] entries = new Map.Entry[size];
Iterator<Map.Entry<K,V>> iter = map.entrySet().iterator();
for (int i=0; i < size; i++) {
entries[i] = iter.next();
}
if (size > 1) ArrayUtil.introSort(entries, termComparator);
return entries;
}
/**
* Returns a String representation of the index data for debugging purposes.
*
* @return the string representation
*/
@Override
public String toString() {
StringBuilder result = new StringBuilder(256);
sortFields();
int sumPositions = 0;
int sumTerms = 0;
final BytesRef spare = new BytesRef();
for (int i=0; i < sortedFields.length; i++) {
Map.Entry<String,Info> entry = sortedFields[i];
String fieldName = entry.getKey();
Info info = entry.getValue();
info.sortTerms();
result.append(fieldName + ":\n");
SliceByteStartArray sliceArray = info.sliceArray;
int numPositions = 0;
SliceReader postingsReader = new SliceReader(intBlockPool);
for (int j=0; j < info.terms.size(); j++) {
int ord = info.sortedTerms[j];
info.terms.get(ord, spare);
int freq = sliceArray.freq[ord];
result.append("\t'" + spare + "':" + freq + ":");
postingsReader.reset(sliceArray.start[ord], sliceArray.end[ord]);
result.append(" [");
final int iters = storeOffsets ? 3 : 1;
while(!postingsReader.endOfSlice()) {
result.append("(");
for (int k = 0; k < iters; k++) {
result.append(postingsReader.readInt());
if (k < iters-1) {
result.append(", ");
}
}
result.append(")");
if (!postingsReader.endOfSlice()) {
result.append(",");
}
}
result.append("]");
result.append("\n");
numPositions += freq;
}
result.append("\tterms=" + info.terms.size());
result.append(", positions=" + numPositions);
result.append("\n");
sumPositions += numPositions;
sumTerms += info.terms.size();
}
result.append("\nfields=" + sortedFields.length);
result.append(", terms=" + sumTerms);
result.append(", positions=" + sumPositions);
return result.toString();
}
/**
* Index data structure for a field; Contains the tokenized term texts and
* their positions.
*/
private static final class Info {
/**
* Term strings and their positions for this field: Map <String
* termText, ArrayIntList positions>
*/
private final BytesRefHash terms;
private final SliceByteStartArray sliceArray;
/** Terms sorted ascending by term text; computed on demand */
private transient int[] sortedTerms;
/** Number of added tokens for this field */
private final int numTokens;
/** Number of overlapping tokens for this field */
private final int numOverlapTokens;
/** Boost factor for hits for this field */
private final float boost;
private final long sumTotalTermFreq;
/** the last position encountered in this field for multi field support*/
private int lastPosition;
/** the last offset encountered in this field for multi field support*/
private int lastOffset;
public Info(BytesRefHash terms, SliceByteStartArray sliceArray, int numTokens, int numOverlapTokens, float boost, int lastPosition, int lastOffset, long sumTotalTermFreq) {
this.terms = terms;
this.sliceArray = sliceArray;
this.numTokens = numTokens;
this.numOverlapTokens = numOverlapTokens;
this.boost = boost;
this.sumTotalTermFreq = sumTotalTermFreq;
this.lastPosition = lastPosition;
this.lastOffset = lastOffset;
}
public long getSumTotalTermFreq() {
return sumTotalTermFreq;
}
/**
* Sorts hashed terms into ascending order, reusing memory along the
* way. Note that sorting is lazily delayed until required (often it's
* not required at all). If a sorted view is required then hashing +
* sort + binary search is still faster and smaller than TreeMap usage
* (which would be an alternative and somewhat more elegant approach,
* apart from more sophisticated Tries / prefix trees).
*/
public void sortTerms() {
if (sortedTerms == null)
sortedTerms = terms.sort(BytesRef.getUTF8SortedAsUnicodeComparator());
}
public float getBoost() {
return boost;
}
}
///////////////////////////////////////////////////////////////////////////////
// Nested classes:
///////////////////////////////////////////////////////////////////////////////
/**
* Search support for Lucene framework integration; implements all methods
* required by the Lucene IndexReader contracts.
*/
private final class MemoryIndexReader extends AtomicReader {
private IndexSearcher searcher; // needed to find searcher.getSimilarity()
private MemoryIndexReader() {
super(); // avoid as much superclass baggage as possible
}
@Override
public void addCoreClosedListener(CoreClosedListener listener) {
addCoreClosedListenerAsReaderClosedListener(this, listener);
}
@Override
public void removeCoreClosedListener(CoreClosedListener listener) {
removeCoreClosedListenerAsReaderClosedListener(this, listener);
}
private Info getInfo(String fieldName) {
return fields.get(fieldName);
}
private Info getInfo(int pos) {
return sortedFields[pos].getValue();
}
@Override
public Bits getLiveDocs() {
return null;
}
@Override
public FieldInfos getFieldInfos() {
return new FieldInfos(fieldInfos.values().toArray(new FieldInfo[fieldInfos.size()]));
}
@Override
public NumericDocValues getNumericDocValues(String field) {
return null;
}
@Override
public BinaryDocValues getBinaryDocValues(String field) {
return null;
}
@Override
public SortedDocValues getSortedDocValues(String field) {
return null;
}
@Override
public SortedNumericDocValues getSortedNumericDocValues(String field) {
return null;
}
@Override
public SortedSetDocValues getSortedSetDocValues(String field) {
return null;
}
@Override
public Bits getDocsWithField(String field) throws IOException {
return null;
}
@Override
public void checkIntegrity() throws IOException {
// no-op
}
private class MemoryFields extends Fields {
@Override
public Iterator<String> iterator() {
return new Iterator<String>() {
int upto = -1;
@Override
public String next() {
upto++;
if (upto >= sortedFields.length) {
throw new NoSuchElementException();
}
return sortedFields[upto].getKey();
}
@Override
public boolean hasNext() {
return upto+1 < sortedFields.length;
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
@Override
public Terms terms(final String field) {
int i = Arrays.binarySearch(sortedFields, field, termComparator);
if (i < 0) {
return null;
} else {
final Info info = getInfo(i);
info.sortTerms();
return new Terms() {
@Override
public TermsEnum iterator(TermsEnum reuse) {
return new MemoryTermsEnum(info);
}
@Override
public Comparator<BytesRef> getComparator() {
return BytesRef.getUTF8SortedAsUnicodeComparator();
}
@Override
public long size() {
return info.terms.size();
}
@Override
public long getSumTotalTermFreq() {
return info.getSumTotalTermFreq();
}
@Override
public long getSumDocFreq() {
// each term has df=1
return info.terms.size();
}
@Override
public int getDocCount() {
return info.terms.size() > 0 ? 1 : 0;
}
@Override
public boolean hasFreqs() {
return true;
}
@Override
public boolean hasOffsets() {
return storeOffsets;
}
@Override
public boolean hasPositions() {
return true;
}
@Override
public boolean hasPayloads() {
return false;
}
};
}
}
@Override
public int size() {
return sortedFields.length;
}
}
@Override
public Fields fields() {
sortFields();
return new MemoryFields();
}
private class MemoryTermsEnum extends TermsEnum {
private final Info info;
private final BytesRef br = new BytesRef();
int termUpto = -1;
public MemoryTermsEnum(Info info) {
this.info = info;
info.sortTerms();
}
private final int binarySearch(BytesRef b, BytesRef bytesRef, int low,
int high, BytesRefHash hash, int[] ords, Comparator<BytesRef> comparator) {
int mid = 0;
while (low <= high) {
mid = (low + high) >>> 1;
hash.get(ords[mid], bytesRef);
final int cmp = comparator.compare(bytesRef, b);
if (cmp < 0) {
low = mid + 1;
} else if (cmp > 0) {
high = mid - 1;
} else {
return mid;
}
}
assert comparator.compare(bytesRef, b) != 0;
return -(low + 1);
}
@Override
public boolean seekExact(BytesRef text) {
termUpto = binarySearch(text, br, 0, info.terms.size()-1, info.terms, info.sortedTerms, BytesRef.getUTF8SortedAsUnicodeComparator());
return termUpto >= 0;
}
@Override
public SeekStatus seekCeil(BytesRef text) {
termUpto = binarySearch(text, br, 0, info.terms.size()-1, info.terms, info.sortedTerms, BytesRef.getUTF8SortedAsUnicodeComparator());
if (termUpto < 0) { // not found; choose successor
termUpto = -termUpto-1;
if (termUpto >= info.terms.size()) {
return SeekStatus.END;
} else {
info.terms.get(info.sortedTerms[termUpto], br);
return SeekStatus.NOT_FOUND;
}
} else {
return SeekStatus.FOUND;
}
}
@Override
public void seekExact(long ord) {
assert ord < info.terms.size();
termUpto = (int) ord;
}
@Override
public BytesRef next() {
termUpto++;
if (termUpto >= info.terms.size()) {
return null;
} else {
info.terms.get(info.sortedTerms[termUpto], br);
return br;
}
}
@Override
public BytesRef term() {
return br;
}
@Override
public long ord() {
return termUpto;
}
@Override
public int docFreq() {
return 1;
}
@Override
public long totalTermFreq() {
return info.sliceArray.freq[info.sortedTerms[termUpto]];
}
@Override
public DocsEnum docs(Bits liveDocs, DocsEnum reuse, int flags) {
if (reuse == null || !(reuse instanceof MemoryDocsEnum)) {
reuse = new MemoryDocsEnum();
}
return ((MemoryDocsEnum) reuse).reset(liveDocs, info.sliceArray.freq[info.sortedTerms[termUpto]]);
}
@Override
public DocsAndPositionsEnum docsAndPositions(Bits liveDocs, DocsAndPositionsEnum reuse, int flags) {
if (reuse == null || !(reuse instanceof MemoryDocsAndPositionsEnum)) {
reuse = new MemoryDocsAndPositionsEnum();
}
final int ord = info.sortedTerms[termUpto];
return ((MemoryDocsAndPositionsEnum) reuse).reset(liveDocs, info.sliceArray.start[ord], info.sliceArray.end[ord], info.sliceArray.freq[ord]);
}
@Override
public Comparator<BytesRef> getComparator() {
return BytesRef.getUTF8SortedAsUnicodeComparator();
}
@Override
public void seekExact(BytesRef term, TermState state) throws IOException {
assert state != null;
this.seekExact(((OrdTermState)state).ord);
}
@Override
public TermState termState() throws IOException {
OrdTermState ts = new OrdTermState();
ts.ord = termUpto;
return ts;
}
}
private class MemoryDocsEnum extends DocsEnum {
private boolean hasNext;
private Bits liveDocs;
private int doc = -1;
private int freq;
public DocsEnum reset(Bits liveDocs, int freq) {
this.liveDocs = liveDocs;
hasNext = true;
doc = -1;
this.freq = freq;
return this;
}
@Override
public int docID() {
return doc;
}
@Override
public int nextDoc() {
if (hasNext && (liveDocs == null || liveDocs.get(0))) {
hasNext = false;
return doc = 0;
} else {
return doc = NO_MORE_DOCS;
}
}
@Override
public int advance(int target) throws IOException {
return slowAdvance(target);
}
@Override
public int freq() throws IOException {
return freq;
}
@Override
public long cost() {
return 1;
}
}
private class MemoryDocsAndPositionsEnum extends DocsAndPositionsEnum {
private int posUpto; // for assert
private boolean hasNext;
private Bits liveDocs;
private int doc = -1;
private SliceReader sliceReader;
private int freq;
private int startOffset;
private int endOffset;
public MemoryDocsAndPositionsEnum() {
this.sliceReader = new SliceReader(intBlockPool);
}
public DocsAndPositionsEnum reset(Bits liveDocs, int start, int end, int freq) {
this.liveDocs = liveDocs;
this.sliceReader.reset(start, end);
posUpto = 0; // for assert
hasNext = true;
doc = -1;
this.freq = freq;
return this;
}
@Override
public int docID() {
return doc;
}
@Override
public int nextDoc() {
if (hasNext && (liveDocs == null || liveDocs.get(0))) {
hasNext = false;
return doc = 0;
} else {
return doc = NO_MORE_DOCS;
}
}
@Override
public int advance(int target) throws IOException {
return slowAdvance(target);
}
@Override
public int freq() throws IOException {
return freq;
}
@Override
public int nextPosition() {
assert posUpto++ < freq;
assert !sliceReader.endOfSlice() : " stores offsets : " + startOffset;
if (storeOffsets) {
int pos = sliceReader.readInt();
startOffset = sliceReader.readInt();
endOffset = sliceReader.readInt();
return pos;
} else {
return sliceReader.readInt();
}
}
@Override
public int startOffset() {
return startOffset;
}
@Override
public int endOffset() {
return endOffset;
}
@Override
public BytesRef getPayload() {
return null;
}
@Override
public long cost() {
return 1;
}
}
@Override
public Fields getTermVectors(int docID) {
if (docID == 0) {
return fields();
} else {
return null;
}
}
private Similarity getSimilarity() {
if (searcher != null) return searcher.getSimilarity();
return IndexSearcher.getDefaultSimilarity();
}
private void setSearcher(IndexSearcher searcher) {
this.searcher = searcher;
}
@Override
public int numDocs() {
if (DEBUG) System.err.println("MemoryIndexReader.numDocs");
return 1;
}
@Override
public int maxDoc() {
if (DEBUG) System.err.println("MemoryIndexReader.maxDoc");
return 1;
}
@Override
public void document(int docID, StoredFieldVisitor visitor) {
if (DEBUG) System.err.println("MemoryIndexReader.document");
// no-op: there are no stored fields
}
@Override
protected void doClose() {
if (DEBUG) System.err.println("MemoryIndexReader.doClose");
}
/** performance hack: cache norms to avoid repeated expensive calculations */
private NumericDocValues cachedNormValues;
private String cachedFieldName;
private Similarity cachedSimilarity;
@Override
public NumericDocValues getNormValues(String field) {
FieldInfo fieldInfo = fieldInfos.get(field);
if (fieldInfo == null || fieldInfo.omitsNorms())
return null;
NumericDocValues norms = cachedNormValues;
Similarity sim = getSimilarity();
if (!field.equals(cachedFieldName) || sim != cachedSimilarity) { // not cached?
Info info = getInfo(field);
int numTokens = info != null ? info.numTokens : 0;
int numOverlapTokens = info != null ? info.numOverlapTokens : 0;
float boost = info != null ? info.getBoost() : 1.0f;
FieldInvertState invertState = new FieldInvertState(field, 0, numTokens, numOverlapTokens, 0, boost);
long value = sim.computeNorm(invertState);
norms = new MemoryIndexNormDocValues(value);
// cache it for future reuse
cachedNormValues = norms;
cachedFieldName = field;
cachedSimilarity = sim;
if (DEBUG) System.err.println("MemoryIndexReader.norms: " + field + ":" + value + ":" + numTokens);
}
return norms;
}
}
/**
* Resets the {@link MemoryIndex} to its initial state and recycles all internal buffers.
*/
public void reset() {
this.fieldInfos.clear();
this.fields.clear();
this.sortedFields = null;
byteBlockPool.reset(false, false); // no need to 0-fill the buffers
intBlockPool.reset(true, false); // here must must 0-fill since we use slices
}
private static final class SliceByteStartArray extends DirectBytesStartArray {
int[] start; // the start offset in the IntBlockPool per term
int[] end; // the end pointer in the IntBlockPool for the postings slice per term
int[] freq; // the term frequency
public SliceByteStartArray(int initSize) {
super(initSize);
}
@Override
public int[] init() {
final int[] ord = super.init();
start = new int[ArrayUtil.oversize(ord.length, RamUsageEstimator.NUM_BYTES_INT)];
end = new int[ArrayUtil.oversize(ord.length, RamUsageEstimator.NUM_BYTES_INT)];
freq = new int[ArrayUtil.oversize(ord.length, RamUsageEstimator.NUM_BYTES_INT)];
assert start.length >= ord.length;
assert end.length >= ord.length;
assert freq.length >= ord.length;
return ord;
}
@Override
public int[] grow() {
final int[] ord = super.grow();
if (start.length < ord.length) {
start = ArrayUtil.grow(start, ord.length);
end = ArrayUtil.grow(end, ord.length);
freq = ArrayUtil.grow(freq, ord.length);
}
assert start.length >= ord.length;
assert end.length >= ord.length;
assert freq.length >= ord.length;
return ord;
}
@Override
public int[] clear() {
start = end = null;
return super.clear();
}
}
}