blob: af20127332acf29135e6e97609e73b24617e1aab [file] [log] [blame]
package org.eclipse.stem.diseasemodels.standard.impl;
/*******************************************************************************
* Copyright (c) 2006 IBM Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
*******************************************************************************/
import java.util.Iterator;
import org.eclipse.emf.common.notify.Notification;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EAttribute;
import org.eclipse.emf.ecore.EClass;
import org.eclipse.emf.ecore.impl.ENotificationImpl;
import org.eclipse.emf.ecore.util.EcoreUtil;
import org.eclipse.stem.core.graph.DynamicLabel;
import org.eclipse.stem.core.graph.LabelValue;
import org.eclipse.stem.core.graph.Edge;
import org.eclipse.stem.core.graph.EdgeLabel;
import org.eclipse.stem.core.graph.Exchange;
import org.eclipse.stem.core.graph.ExchangeType;
import org.eclipse.stem.core.graph.GraphFactory;
import org.eclipse.stem.core.graph.IntegrationLabel;
import org.eclipse.stem.core.graph.IntegrationLabelValue;
import org.eclipse.stem.core.graph.Node;
import org.eclipse.stem.core.graph.NodeLabel;
import org.eclipse.stem.core.model.STEMTime;
import org.eclipse.stem.definitions.labels.AreaLabel;
import org.eclipse.stem.definitions.labels.CommonBorderRelationshipLabel;
import org.eclipse.stem.definitions.labels.CommonBorderRelationshipLabelValue;
import org.eclipse.stem.definitions.labels.PopulationLabel;
import org.eclipse.stem.definitions.labels.impl.CommonBorderRelationshipLabelImpl;
import org.eclipse.stem.definitions.labels.impl.RoadTransportRelationshipLabelImpl;
import org.eclipse.stem.definitions.labels.impl.RoadTransportRelationshipLabelValueImpl;
import org.eclipse.stem.definitions.nodes.Region;
import org.eclipse.stem.diseasemodels.Activator;
import org.eclipse.stem.diseasemodels.standard.DiseaseModelLabelValue;
import org.eclipse.stem.diseasemodels.standard.StandardDiseaseModel;
import org.eclipse.stem.diseasemodels.standard.StandardDiseaseModelLabel;
import org.eclipse.stem.diseasemodels.standard.StandardDiseaseModelLabelValue;
import org.eclipse.stem.diseasemodels.standard.StandardPackage;
import org.eclipse.stem.populationmodels.standard.StandardPopulationModelLabel;
/**
* <!-- begin-user-doc --> An implementation of the model object '<em><b>Disease Model</b></em>'.
* <!-- end-user-doc -->
* <p>
* The following features are implemented:
* <ul>
* <li>{@link org.eclipse.stem.diseasemodels.standard.impl.StandardDiseaseModelImpl#getReferencePopulationDensity <em>Reference Population Density</em>}</li>
* <li>{@link org.eclipse.stem.diseasemodels.standard.impl.StandardDiseaseModelImpl#getRoadNetworkInfectiousProportion <em>Road Network Infectious Proportion</em>}</li>
* <li>{@link org.eclipse.stem.diseasemodels.standard.impl.StandardDiseaseModelImpl#getCharacteristicMixingDistance <em>Characteristic Mixing Distance</em>}</li>
* </ul>
* </p>
*
* @generated
*/
public abstract class StandardDiseaseModelImpl extends DiseaseModelImpl
implements StandardDiseaseModel {
/**
* The default value of the '{@link #getReferencePopulationDensity() <em>Reference Population Density</em>}' attribute.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #getReferencePopulationDensity()
* @generated
* @ordered
*/
protected static final double REFERENCE_POPULATION_DENSITY_EDEFAULT = 100.0;
/**
* The cached value of the '{@link #getReferencePopulationDensity() <em>Reference Population Density</em>}' attribute.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #getReferencePopulationDensity()
* @generated
* @ordered
*/
protected double referencePopulationDensity = REFERENCE_POPULATION_DENSITY_EDEFAULT;
/**
* The default value of the '{@link #getRoadNetworkInfectiousProportion() <em>Road Network Infectious Proportion</em>}' attribute.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #getRoadNetworkInfectiousProportion()
* @generated
* @ordered
*/
protected static final double ROAD_NETWORK_INFECTIOUS_PROPORTION_EDEFAULT = 0.01;
/**
* The cached value of the '{@link #getRoadNetworkInfectiousProportion() <em>Road Network Infectious Proportion</em>}' attribute.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #getRoadNetworkInfectiousProportion()
* @generated
* @ordered
*/
protected double roadNetworkInfectiousProportion = ROAD_NETWORK_INFECTIOUS_PROPORTION_EDEFAULT;
/**
* The default value of the '{@link #getCharacteristicMixingDistance() <em>Characteristic Mixing Distance</em>}' attribute.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #getCharacteristicMixingDistance()
* @generated
* @ordered
*/
protected static final double CHARACTERISTIC_MIXING_DISTANCE_EDEFAULT = 2.25;
/**
* The cached value of the '{@link #getCharacteristicMixingDistance() <em>Characteristic Mixing Distance</em>}' attribute.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #getCharacteristicMixingDistance()
* @generated
* @ordered
*/
protected double characteristicMixingDistance = CHARACTERISTIC_MIXING_DISTANCE_EDEFAULT;
/**
* <!-- begin-user-doc --> <!-- end-user-doc -->
* @generated
*/
protected StandardDiseaseModelImpl() {
super();
}
/**
* <!-- begin-user-doc --> <!-- end-user-doc -->
* @generated
*/
@Override
protected EClass eStaticClass() {
return StandardPackage.Literals.STANDARD_DISEASE_MODEL;
}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public double getReferencePopulationDensity() {
return referencePopulationDensity;
}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public void setReferencePopulationDensity(double newReferencePopulationDensity) {
double oldReferencePopulationDensity = referencePopulationDensity;
referencePopulationDensity = newReferencePopulationDensity;
if (eNotificationRequired())
eNotify(new ENotificationImpl(this, Notification.SET, StandardPackage.STANDARD_DISEASE_MODEL__REFERENCE_POPULATION_DENSITY, oldReferencePopulationDensity, referencePopulationDensity));
}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public double getRoadNetworkInfectiousProportion() {
return roadNetworkInfectiousProportion;
}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public void setRoadNetworkInfectiousProportion(double newRoadNetworkInfectiousProportion) {
double oldRoadNetworkInfectiousProportion = roadNetworkInfectiousProportion;
roadNetworkInfectiousProportion = newRoadNetworkInfectiousProportion;
if (eNotificationRequired())
eNotify(new ENotificationImpl(this, Notification.SET, StandardPackage.STANDARD_DISEASE_MODEL__ROAD_NETWORK_INFECTIOUS_PROPORTION, oldRoadNetworkInfectiousProportion, roadNetworkInfectiousProportion));
}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public double getCharacteristicMixingDistance() {
return characteristicMixingDistance;
}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public void setCharacteristicMixingDistance(double newCharacteristicMixingDistance) {
double oldCharacteristicMixingDistance = characteristicMixingDistance;
characteristicMixingDistance = newCharacteristicMixingDistance;
if (eNotificationRequired())
eNotify(new ENotificationImpl(this, Notification.SET, StandardPackage.STANDARD_DISEASE_MODEL__CHARACTERISTIC_MIXING_DISTANCE, oldCharacteristicMixingDistance, characteristicMixingDistance));
}
/**
* calculateDelta will use the current label values updated by
* the disease model and upon return the delta label values
* are set with an estimate of the derivatives to advance to the
* next step
*
* @param time current time
* @param timeDelta delta time step
* @param labels The labels to update
*/
public void calculateDelta(STEMTime time, long timeDelta, EList<DynamicLabel> labels) {
// Iterate through each of the labels we need to update.
// Place holders to keep delta values.
for (final Iterator<DynamicLabel> currentStateLabelIter = labels
.iterator(); currentStateLabelIter.hasNext();) {
final StandardDiseaseModelLabel diseaseLabel = (StandardDiseaseModelLabel) currentStateLabelIter
.next();
DiseaseModelLabelValue birthDeathsDelta = this.createDiseaseModelLabelValue(diseaseLabel.getIdentifier());
DiseaseModelLabelValue diseaseDelta = this.createDiseaseModelLabelValue(diseaseLabel.getIdentifier());
assert diseaseLabel.getPopulationLabel().getPopulationIdentifier()
.equals(getPopulationIdentifier());
// This current state of the disease for this label probed for the
// next delta
final StandardDiseaseModelLabelValue currentProbeState = (StandardDiseaseModelLabelValue)diseaseLabel
.getProbeValue();
// Compute delta changes
final StandardDiseaseModelLabelValue diseaseDeltas = computeDiseaseDeltas(time, currentProbeState, diseaseLabel, timeDelta, diseaseDelta);
/*
* 5) Record the new state variable values.
*
* These will become the current state variable values at the end of
* the current simulation cycle and before the next.
*/
// This is the delta disease label
final StandardDiseaseModelLabelValue deltaState = (StandardDiseaseModelLabelValue)diseaseLabel
.getDeltaValue();
// Reset the state
deltaState.reset();
// 1) Update the delta
deltaState.add((IntegrationLabelValue)diseaseDeltas);
// 2) Set the departures
deltaState.getArrivals().clear();
deltaState.getDepartures().clear();
if(((StandardDiseaseModelLabelValue)diseaseDeltas).getDiseaseDeaths() > 0.0) {
Exchange deathExchange = GraphFactory.eINSTANCE.createExchange();
deathExchange.setType(ExchangeType.BIRTHS_AND_DEATHS);
deathExchange.setCount(((StandardDiseaseModelLabelValue)diseaseDeltas).getDiseaseDeaths());
deltaState.getDepartures().add(deathExchange);
}
// and pass on the incidence
// int n=0;
// for(EStructuralFeature es:incidenceFeatures)
// deltaState.eSet(es, incidences.get(n++));
birthDeathsDelta.reset();
diseaseDelta.reset();
} // for
}
public void applyExternalDeltas(STEMTime time, long timeDelta, EList<DynamicLabel> labels) {
for (final Iterator<DynamicLabel> currentStateLabelIter = labels
.iterator(); currentStateLabelIter.hasNext();) {
final StandardDiseaseModelLabel diseaseLabel = (StandardDiseaseModelLabel) currentStateLabelIter
.next();
StandardDiseaseModelLabelValue myDelta = (StandardDiseaseModelLabelValue)diseaseLabel.getDeltaValue();
Node n = diseaseLabel.getNode();
// Find other labels on the node that wants to exchange data
EList<NodeLabel> labs = n.getLabels();
for(NodeLabel l:labs) {
if(l instanceof IntegrationLabel && !l.equals(diseaseLabel)
&& ((IntegrationLabel)l).getIdentifier().equals(diseaseLabel.getIdentifier())) {
IntegrationLabelValue sdeLabelValue = (IntegrationLabelValue)((IntegrationLabel)l).getDeltaValue();
EList<Exchange>arrivals = sdeLabelValue.getArrivals();
EList<Exchange>departures = sdeLabelValue.getDepartures();
if(arrivals == null || departures == null) {
Activator.logError("Error, null arrivals or departures for label "+l, new Exception());
continue;
}
// Arrivals
for (Exchange entry : arrivals) {
//for(Node n2:arrivals.keySet()) {
if(entry.getType() == ExchangeType.BIRTHS_AND_DEATHS) {
// Births go into the S state.
myDelta.setS(myDelta.getS() + entry.getCount());
} else if (entry.getType() == ExchangeType.MIGRATION) {
double inflow = entry.getCount();
// Find the corresponding disease label on the other node
Node otherNode = (Node)entry.getOtherLabel().getIdentifiable();
for(NodeLabel nl:otherNode.getLabels())
if(nl instanceof StandardDiseaseModelLabel &&
((StandardDiseaseModelLabel)nl).getDecorator().equals(this) &&
((StandardDiseaseModelLabel)nl).getPopulationModelLabel().getPopulationIdentifier().equals(diseaseLabel.getIdentifier())) {
StandardDiseaseModelLabelValue value = (StandardDiseaseModelLabelValue)EcoreUtil.copy(((StandardDiseaseModelLabel)nl).getTempValue());
if(value.getPopulationCount() > 0.0) {
value.scale(inflow/value.getPopulationCount());
}
// Remember disease deaths since it'll be overwritten in the add
double diseaseDeaths = myDelta.getDiseaseDeaths();
myDelta.add((IntegrationLabelValue)value);
myDelta.setDiseaseDeaths(diseaseDeaths);
}
} else if (entry.getType() == ExchangeType.AGING) {
// Find the disease label of the other age group
String otherAgeGroup = ((StandardPopulationModelLabel)entry.getOtherLabel()).getPopulationIdentifier();
for (NodeLabel nl : labs) {
if (nl instanceof StandardDiseaseModelLabel) {
StandardDiseaseModelLabel otherDiseaseLabel = (StandardDiseaseModelLabel) nl;
if (otherDiseaseLabel.getDecorator().equals(this) && otherDiseaseLabel.getIdentifier().equals(otherAgeGroup)) {
StandardDiseaseModelLabelValue value = (StandardDiseaseModelLabelValue)EcoreUtil.copy(otherDiseaseLabel.getTempValue());
if (value.getPopulationCount() > 0.0) {
value.scale(entry.getCount() / value.getPopulationCount());
}
double diseaseDeaths = myDelta.getDiseaseDeaths();
myDelta.add((IntegrationLabelValue)value);
myDelta.setDiseaseDeaths(diseaseDeaths);
}
}
}
}
}
// Departures
for(Exchange entry : departures) {
// Departures are either deaths or population moving to other nodes, hence we substract from the local node.
StandardDiseaseModelLabelValue currentState = null;
if(entry.getType() == ExchangeType.BIRTHS_AND_DEATHS || entry.getType() == ExchangeType.AGING)
currentState = (StandardDiseaseModelLabelValue)EcoreUtil.copy((StandardDiseaseModelLabelValue)diseaseLabel.getProbeValue()); // Should be safe to use probe value for deaths
else if (entry.getType() == ExchangeType.MIGRATION)
currentState = (StandardDiseaseModelLabelValue)EcoreUtil.copy((StandardDiseaseModelLabelValue)diseaseLabel.getTempValue()); // Need to use temp value for migration or an inbalance will occyr
double populationCount = currentState.getPopulationCount();
double outflow = entry.getCount();
double factor = outflow/populationCount;
if(Double.isNaN(factor) || Double.isInfinite(factor)) factor = 0.0; //safe
currentState.scale(factor);
// Remember disease deaths since they will be overwritten by sub
double diseaseDeaths = myDelta.getDiseaseDeaths();
myDelta.sub((IntegrationLabelValue)currentState);
myDelta.setDiseaseDeaths(diseaseDeaths);
}
}
}
}
}
/**
* <!-- begin-user-doc --> <!-- end-user-doc -->
* @generated
*/
@Override
public Object eGet(int featureID, boolean resolve, boolean coreType) {
switch (featureID) {
case StandardPackage.STANDARD_DISEASE_MODEL__REFERENCE_POPULATION_DENSITY:
return getReferencePopulationDensity();
case StandardPackage.STANDARD_DISEASE_MODEL__ROAD_NETWORK_INFECTIOUS_PROPORTION:
return getRoadNetworkInfectiousProportion();
case StandardPackage.STANDARD_DISEASE_MODEL__CHARACTERISTIC_MIXING_DISTANCE:
return getCharacteristicMixingDistance();
}
return super.eGet(featureID, resolve, coreType);
}
/**
* <!-- begin-user-doc --> <!-- end-user-doc -->
* @generated
*/
@Override
public void eSet(int featureID, Object newValue) {
switch (featureID) {
case StandardPackage.STANDARD_DISEASE_MODEL__REFERENCE_POPULATION_DENSITY:
setReferencePopulationDensity((Double)newValue);
return;
case StandardPackage.STANDARD_DISEASE_MODEL__ROAD_NETWORK_INFECTIOUS_PROPORTION:
setRoadNetworkInfectiousProportion((Double)newValue);
return;
case StandardPackage.STANDARD_DISEASE_MODEL__CHARACTERISTIC_MIXING_DISTANCE:
setCharacteristicMixingDistance((Double)newValue);
return;
}
super.eSet(featureID, newValue);
}
/**
* <!-- begin-user-doc --> <!-- end-user-doc -->
* @generated
*/
@Override
public void eUnset(int featureID) {
switch (featureID) {
case StandardPackage.STANDARD_DISEASE_MODEL__REFERENCE_POPULATION_DENSITY:
setReferencePopulationDensity(REFERENCE_POPULATION_DENSITY_EDEFAULT);
return;
case StandardPackage.STANDARD_DISEASE_MODEL__ROAD_NETWORK_INFECTIOUS_PROPORTION:
setRoadNetworkInfectiousProportion(ROAD_NETWORK_INFECTIOUS_PROPORTION_EDEFAULT);
return;
case StandardPackage.STANDARD_DISEASE_MODEL__CHARACTERISTIC_MIXING_DISTANCE:
setCharacteristicMixingDistance(CHARACTERISTIC_MIXING_DISTANCE_EDEFAULT);
return;
}
super.eUnset(featureID);
}
/**
* <!-- begin-user-doc --> <!-- end-user-doc -->
* @generated
*/
@Override
public boolean eIsSet(int featureID) {
switch (featureID) {
case StandardPackage.STANDARD_DISEASE_MODEL__REFERENCE_POPULATION_DENSITY:
return referencePopulationDensity != REFERENCE_POPULATION_DENSITY_EDEFAULT;
case StandardPackage.STANDARD_DISEASE_MODEL__ROAD_NETWORK_INFECTIOUS_PROPORTION:
return roadNetworkInfectiousProportion != ROAD_NETWORK_INFECTIOUS_PROPORTION_EDEFAULT;
case StandardPackage.STANDARD_DISEASE_MODEL__CHARACTERISTIC_MIXING_DISTANCE:
return characteristicMixingDistance != CHARACTERISTIC_MIXING_DISTANCE_EDEFAULT;
}
return super.eIsSet(featureID);
}
/**
* Standard disease models do not update the labels, it's the
* task of the Solver to do that.
*
* Standard Disease Models
* @see org.eclipse.stem.core.model.impl.DecoratorImpl#updateLabels(org.eclipse.stem.core.graph.Graph,
* org.eclipse.stem.core.model.STEMTime)
*/
@Override
public void updateLabels(final STEMTime time, final long timeDelta, int cycle) {
throw new UnsupportedOperationException();
}
/**
* Populate the pipe system nodes initially
*/
/**
* This method replaces the onsiteInfectious value with an effectiveInfectious population
* size based on mixing with neighboring sites. In this implementation the edges are bidirectional
* and have a fixed weight based on getPhysicallyAdjacentInfectiousProportion() (called in the helper method
* getInfectiousChangeFromMixing(). But the mixing is also weighted by the areas and populations of a site relative
* to the area and population of it's neighbors. Note that the value returned must be NORMALIZED by the total
* population because the product beta * S * Ieffective must have units of persons. Since S has units of persons
* the Ieffective must be dimensionless (normalized to the population). beta is the infection rate and has units
* of inverse time.
* @see org.eclipse.stem.diseasemodels.standard.SI.getNormalizedEffectiveInfectious
* @param node the node we are currently looking at to compute the next disease state
* @param diseaseLabel the label for the current disease computation
* @param onsiteInfectious the number of infectious people on site (at the node above)
* @generated NOT
*/
public double getNormalizedEffectiveInfectious(final Node node, final StandardDiseaseModelLabel diseaseLabel, final double onsiteInfectious) {
return getNormalizedEffectiveInfectious(node, diseaseLabel, onsiteInfectious, StandardPackage.Literals.SI_LABEL_VALUE__I);
}
/**
* Takes an additional attribute to use for the infectious
* @generated NOT
*/
public double getNormalizedEffectiveInfectious(final Node node, final StandardDiseaseModelLabel diseaseLabel, final double onsiteInfectious, EAttribute infectiousAttribute) {
// running tally of changes from mixing with other nodes
double infectiousChangeFromMixing = 0.0;
double borderDivisor = 0.0;
double roadDivisor = 0.0;
for (final Iterator<Edge> commonBorderEdgeIter = CommonBorderRelationshipLabelImpl
.getCommonBorderEdgesFromNode(node).iterator(); commonBorderEdgeIter
.hasNext();) {
final Edge borderEdge = commonBorderEdgeIter.next();
// If it exists, we're looking for the label this disease model
// updates on the node at the other end of the border edge.
final Node otherNode = borderEdge.getOtherNode(node);
StandardDiseaseModelLabel neighborLabel = null;
// sum up the changes from each connected node.
// NOTE: some of these changes could be negative
CommonBorderRelationshipLabelValue cbrlv = (CommonBorderRelationshipLabelValue)((CommonBorderRelationshipLabel)borderEdge.getLabel()).getCurrentValue();
double borderLength = cbrlv.getBorderLength();
double characteristicMixingDistance = getCharacteristicMixingDistance();
double mixingFactor = 0.0;
double factor = 0.0;
if (otherNode instanceof Region) {
double otherAvgExtent = -1.0;
for (final Iterator<NodeLabel> labelIter = otherNode.getLabels().iterator(); labelIter.hasNext();) {
final NodeLabel nodeLabel = labelIter.next();
// Is this an area label?
// Old code
/*
if (nodeLabel instanceof AreaLabel) {
// Yes
final AreaLabel areaLabel = (AreaLabel) nodeLabel;
otherAvgExtent = areaLabel.getCurrentAreaValue().getAverageExtent();
break;
}
} // for
// IF we have a valid area
if(otherAvgExtent >= 0.0) {
mixingFactor = (characteristicMixingDistance/otherAvgExtent) ;
if(mixingFactor > 1.0) mixingFactor = 1.0;
}
*/
// End Old Code
/// New code
if (nodeLabel instanceof AreaLabel) {
// Yes
final AreaLabel areaLabel = (AreaLabel) nodeLabel;
double area = areaLabel.getCurrentAreaValue().getArea();
if(area > 0.0)
factor = borderLength / area;
break;
}
} // for
// IF we have a valid area
mixingFactor = characteristicMixingDistance*factor;
if(mixingFactor > 1.0) mixingFactor = 1.0;
// End new code
}
infectiousChangeFromMixing += getInfectiousChangeFromMixing(this, otherNode, diseaseLabel, onsiteInfectious, mixingFactor, infectiousAttribute);
borderDivisor += mixingFactor*this.getLocalPopulation(this, otherNode);
} // for each border edge
for (final Iterator<Edge> roadEdgeIter = RoadTransportRelationshipLabelImpl.getRoadEdgesFromNode(node).iterator(); roadEdgeIter.hasNext();) {
final Edge roadEdge = roadEdgeIter.next();
// find the number of edges from the road edge - could be more than one
// also, roads have differenct capacities
final EdgeLabel edgeLabel = roadEdge.getLabel();
// init the number of crossings or total road connections across the border
double numCrossings = 1.0;
if (edgeLabel instanceof RoadTransportRelationshipLabelImpl) {
RoadTransportRelationshipLabelValueImpl roadLabelValue = (RoadTransportRelationshipLabelValueImpl)(edgeLabel.getCurrentValue());
numCrossings = roadLabelValue.getNumberCrossings();
}
double infectiousProportion = getRoadNetworkInfectiousProportion() * numCrossings;
// must never be greater than 1
if(infectiousProportion > 1.0) infectiousProportion = 1.0;
// If it exists, we're looking for the label this disease model
// updates on the node at the other end of the border edge.
final Node otherNode = roadEdge.getOtherNode(node);
StandardDiseaseModelLabel neighborLabel = null;
// sum up the changes from each connected node.
// NOTE: some of these changes could be negative
infectiousChangeFromMixing += getInfectiousChangeFromMixing(this, otherNode, diseaseLabel, onsiteInfectious, infectiousProportion);
roadDivisor += infectiousProportion*this.getLocalPopulation(this, otherNode);
} // for each road edge
// return the sum normalized to the total population
double denom = ((StandardDiseaseModelLabelValue)diseaseLabel.getTempValue()).getPopulationCount() + borderDivisor + roadDivisor;
double retVal = 0.0;
if (denom > 0.0) {
retVal = ( onsiteInfectious + infectiousChangeFromMixing ) / denom;
}
return retVal;
} // getNormalizedEffectiveInfectious
/**
*
* @param diseaseModel
* @param node
* @return
*/
private double getLocalPopulation(final StandardDiseaseModel diseaseModel, Node node) {
for (final Iterator<NodeLabel> labelIter = node.getLabels().iterator(); labelIter.hasNext();) {
final NodeLabel nodeLabel = labelIter.next();
// Is this a disease label?
if (nodeLabel instanceof StandardDiseaseModelLabel) {
final IntegrationLabel otherSILabel = (IntegrationLabel) nodeLabel;
// Yes
// Is it updated by this disease model?
if (diseaseModel == otherSILabel.getDecorator())
return ((StandardDiseaseModelLabelValue)otherSILabel.getTempValue()).getPopulationCount();
}
}
return 0.0;
}
/**
* This method correctly computes the mixing of the infectious population (onsite) with the infectious population
* at neighboring nodes
* @param diseaseModel
* @param the node
* @param diseaseLabel
* @param onsiteInfectious
* @param connectedInfectiousProportion (this is the weight given to the edge connection)
* @return the number of population members at a node infected by the disease modeled by diseaseModel
*/
protected double getInfectiousChangeFromMixing(final StandardDiseaseModel diseaseModel,
final Node node, final StandardDiseaseModelLabel diseaseLabel, final double onsiteInfectious, double connectedInfectiousProportion) {
return getInfectiousChangeFromMixing(diseaseModel, node, diseaseLabel, onsiteInfectious, connectedInfectiousProportion, StandardPackage.Literals.SI_LABEL_VALUE__I);
}
/**
* This method correctly computes the mixing of the infectious population (onsite) with the infectious population
* at neighboring nodes
* @param diseaseModel
* @param the node
* @param diseaseLabel
* @param onsiteInfectious
* @param connectedInfectiousProportion (this is the weight given to the edge connection)
* @return the number of population members at a node infected by the disease modeled by diseaseModel
*/
protected double getInfectiousChangeFromMixing(final StandardDiseaseModel diseaseModel,
final Node node, final StandardDiseaseModelLabel diseaseLabel, final double onsiteInfectious, double connectedInfectiousProportion, EAttribute infectiousAttribute) {
double retValue = 0.0;
// the local area
//double a0 = getArea(diseaseLabel.getPopulationLabel());
// the local population
//double p0 = ((StandardDiseaseModelLabelValue)diseaseLabel.getTempValue()).getPopulationCount();
// infectious from other sites mixing here at site 0
double mixing = 0.0;
for (final Iterator<NodeLabel> labelIter = node.getLabels().iterator(); labelIter
.hasNext();) {
final NodeLabel nodeLabel = labelIter.next();
// Is this a disease label?
if (nodeLabel instanceof StandardDiseaseModelLabel) {
final StandardDiseaseModelLabel otherSILabel = (StandardDiseaseModelLabel) nodeLabel;
// Yes
// Is it updated by this disease model?
if (diseaseModel == otherSILabel.getDecorator() && otherSILabel.getPopulationLabel().getPopulationIdentifier().equals(diseaseLabel.getPopulationLabel().getPopulationIdentifier())) {
if(this.isFrequencyDependent()) {
double Iother = (Double)((otherSILabel.getTempValue())).eGet(infectiousAttribute);
//double Iother = otherSILabel.getCurrentSIValue().getI();
double mixingFactor = connectedInfectiousProportion;
mixing = Iother * mixingFactor;
} else {
// double a1 = getArea(otherSILabel.getPopulationLabel());
// double p1 = ((StandardDiseaseModelLabelValue)otherSILabel.getTempValue()).getPopulationCount();
// double Iother = (otherSILabel.getTempValue()).getI();
// double mixingFactor = (a0*p1 + a1*p0)* connectedInfectiousProportion /(a1* (p1+p0)) ;
// mixing = Iother * mixingFactor;
}
break;
} // if
}
} // for
return mixing;
} // getInfectiousChangeFromMixing
/**
* @param populationLabel
* the population label that labels the node
* @return the area of the node associated with the label
*/
public double getArea(final PopulationLabel populationLabel) {
double retValue = 0.0;
// The population label could have an area specified for the population
// that we should use instead of the area of the region labeled by the
// population label. This value would be specified if the population was
// densely packed into a small area of the larger region, for instance
// like a city in an otherwise large desert.
retValue = populationLabel.getPopulatedArea();
// Is there an area specified for the population?
if (retValue == 0.0) {
// No
// Ok, go find the area label and return the area of the region
for (final Iterator<NodeLabel> labelIter = populationLabel.getNode()
.getLabels().iterator(); labelIter.hasNext();) {
final NodeLabel nodeLabel = labelIter.next();
// Is this an area label?
if (nodeLabel instanceof AreaLabel) {
// Yes
final AreaLabel areaLabel = (AreaLabel) nodeLabel;
retValue = areaLabel.getCurrentAreaValue().getArea();
break;
}
} // for
} // If no population area specified
return retValue;
} // getArea
/**
* @param populationLabel
* @param area
*/
private void reportBadAreaValue(final PopulationLabel populationLabel,
double area) {
// The bad value could be specified for the node or be an override
// value specified for the population.
// Is the bad value from the node?
if (populationLabel.getPopulatedArea() == 0.0) {
// Yes
Activator.logError("The area value of \"" + area
+ "\" specified for \""
+ populationLabel.getNode().toString()
+ "\" is not greater than zero (0.0)", null);
} // if bad value for node area
else {
Activator.logError("The area value of \"" + area
+ "\" specified for the population \""
+ populationLabel.getName() + "\" for the region \""
+ populationLabel.getNode().toString()
+ "\" is not greater than zero (0.0)", null);
}
} // reportBadAreaValue
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public double getEffectiveInfectious(Node node, StandardDiseaseModelLabel diseaseLabel, double onsiteInfectious) {
// TODO: implement this method
// Ensure that you remove @generated or mark it @generated NOT
throw new UnsupportedOperationException();
}
/**
* computeDiseaseDeltas. This method calculates the delta changes for each disease state depending
* on disease parameters and mixing factors
*
* @param time
* STEM time
* @param currentState
* the current state of the population
* @param diseaseLabel
* the disease label for which the state transitions are being
* computed.
* @param timeDelta
* the time period (milliseconds) over which the population
* members transition to new states
* @param cycle
* the simulation cycle we're in
* @return a disease state label value that contains the delta changes in
* population members for each state.
*/
public abstract StandardDiseaseModelLabelValue computeDiseaseDeltas(
final STEMTime time,
final StandardDiseaseModelLabelValue currentState,
final StandardDiseaseModelLabel diseaseLabel,
final long timeDelta,
DiseaseModelLabelValue returnValue);
@Override
public void resetLabels() {
super.resetLabels();
} // resetLabels
/**
* <!-- begin-user-doc --> <!-- end-user-doc -->
* @generated
*/
@Override
public String toString() {
if (eIsProxy()) return super.toString();
StringBuffer result = new StringBuffer(super.toString());
result.append(" (referencePopulationDensity: "); //$NON-NLS-1$
result.append(referencePopulationDensity);
result.append(", roadNetworkInfectiousProportion: "); //$NON-NLS-1$
result.append(roadNetworkInfectiousProportion);
result.append(", characteristicMixingDistance: "); //$NON-NLS-1$
result.append(characteristicMixingDistance);
result.append(')');
return result.toString();
}
/**
* @see org.eclipse.stem.diseasemodels.standard.impl.DiseaseModelImpl#sane()
*/
@Override
public boolean sane() {
boolean retValue = super.sane();
return retValue;
} // sane
} // StandardDiseaseModelImpl