blob: 1ed3271944293a5c0c17cd09a256e89ffdf4f379 [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 2007, 2010 Wind River Systems, Inc. and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at
* http://www.eclipse.org/legal/epl-v10.html
* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/edl-v10.php.
* You may elect to redistribute this code under either of these licenses.
*
* Contributors:
* Wind River Systems - initial API and implementation
*******************************************************************************/
/*
* This module handles process/thread OS contexts and their state machine.
*/
#include <config.h>
#if defined(__APPLE__)
#if ENABLE_DebugContext && !ENABLE_ContextProxy
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <sched.h>
#include <sys/syscall.h>
#include <sys/ptrace.h>
#include <mach/thread_status.h>
#include <framework/context.h>
#include <framework/events.h>
#include <framework/errors.h>
#include <framework/trace.h>
#include <framework/myalloc.h>
#include <framework/waitpid.h>
#include <framework/signames.h>
#include <services/breakpoints.h>
#include <system/Darwin/regset.h>
#define WORD_SIZE 4
typedef struct ContextExtensionDarwin {
pid_t pid;
ContextAttachCallBack * attach_callback;
void * attach_data;
int ptrace_flags;
int ptrace_event;
int syscall_enter;
int syscall_exit;
int syscall_id;
ContextAddress syscall_pc;
ContextAddress loader_state;
int end_of_step;
REG_SET * regs; /* copy of context registers, updated when context stops */
ErrorReport * regs_error; /* if not NULL, 'regs' is invalid */
int regs_dirty; /* if not 0, 'regs' is modified and needs to be saved before context is continued */
int pending_step;
} ContextExtensionDarwin;
static size_t context_extension_offset = 0;
#define EXT(ctx) ((ContextExtensionDarwin *)((char *)(ctx) + context_extension_offset))
#include <system/pid-hash.h>
static LINK pending_list;
static MemoryErrorInfo mem_err_info;
const char * context_suspend_reason(Context * ctx) {
static char reason[128];
if (EXT(ctx)->end_of_step) return REASON_STEP;
if (EXT(ctx)->syscall_enter) return "System Call";
if (EXT(ctx)->syscall_exit) return "System Return";
if (ctx->signal == SIGSTOP || ctx->signal == SIGTRAP) return REASON_USER_REQUEST;
snprintf(reason, sizeof(reason), "Signal %d", ctx->signal);
return reason;
}
int context_attach_self(void) {
if (ptrace(PT_TRACE_ME, 0, 0, 0) < 0) {
int err = errno;
trace(LOG_ALWAYS, "error: ptrace(PT_TRACE_ME) failed: pid %d, error %d %s",
getpid(), err, errno_to_str(err));
errno = err;
return -1;
}
return 0;
}
int context_attach(pid_t pid, ContextAttachCallBack * done, void * data, int mode) {
Context * ctx = NULL;
assert(done != NULL);
trace(LOG_CONTEXT, "context: attaching pid %d", pid);
if ((mode & CONTEXT_ATTACH_SELF) == 0 && ptrace(PT_ATTACH, pid, 0, 0) < 0) {
int err = errno;
trace(LOG_ALWAYS, "error: ptrace(PT_ATTACH) failed: pid %d, error %d %s",
pid, err, errno_to_str(err));
errno = err;
return -1;
}
add_waitpid_process(pid);
ctx = create_context(pid2id(pid, 0));
ctx->mem = ctx;
ctx->mem_access |= MEM_ACCESS_INSTRUCTION;
ctx->mem_access |= MEM_ACCESS_DATA;
ctx->mem_access |= MEM_ACCESS_USER;
ctx->big_endian = big_endian_host();
EXT(ctx)->pid = pid;
EXT(ctx)->attach_callback = done;
EXT(ctx)->attach_data = data;
list_add_first(&ctx->ctxl, &pending_list);
/* TODO: context_attach works only for main task in a process */
return 0;
}
int context_has_state(Context * ctx) {
return ctx != NULL && ctx->parent != NULL;
}
int context_stop(Context * ctx) {
trace(LOG_CONTEXT, "context:%s suspending ctx %#lx, id %s",
ctx->pending_intercept ? "" : " temporary", ctx, ctx->id);
assert(is_dispatch_thread());
assert(!ctx->exited);
assert(!ctx->stopped);
assert(!EXT(ctx)->regs_dirty);
if (kill(EXT(ctx)->pid, SIGSTOP) < 0) {
int err = errno;
if (err == ESRCH) {
ctx->exiting = 1;
return 0;
}
trace(LOG_ALWAYS, "error: tkill(SIGSTOP) failed: ctx %#lx, id %s, error %d %s",
ctx, ctx->id, err, errno_to_str(err));
errno = err;
return -1;
}
return 0;
}
static int syscall_never_returns(Context * ctx) {
if (EXT(ctx)->syscall_enter) {
switch (EXT(ctx)->syscall_id) {
case SYS_sigreturn:
return 1;
}
}
return 0;
}
int context_continue(Context * ctx) {
int signal = 0;
assert(is_dispatch_thread());
assert(ctx->stopped);
assert(!ctx->exited);
assert(!ctx->pending_intercept);
assert(!EXT(ctx)->pending_step);
if (skip_breakpoint(ctx, 0)) return 0;
if (!EXT(ctx)->syscall_enter) {
while (ctx->pending_signals != 0) {
while ((ctx->pending_signals & (1 << signal)) == 0) signal++;
if (ctx->sig_dont_pass & (1 << signal)) {
ctx->pending_signals &= ~(1 << signal);
signal = 0;
}
else {
break;
}
}
assert(signal != SIGSTOP);
assert(signal != SIGTRAP);
}
trace(LOG_CONTEXT, "context: resuming ctx %#lx, id %s, with signal %d", ctx, ctx->id, signal);
#if defined(__i386__)
if (EXT(ctx)->regs->__eflags & 0x100) {
EXT(ctx)->regs->__eflags &= ~0x100;
EXT(ctx)->regs_dirty = 1;
}
#elif defined(__x86_64__)
if (EXT(ctx)->regs->__rflags & 0x100) {
EXT(ctx)->regs->__rflags &= ~0x100;
EXT(ctx)->regs_dirty = 1;
}
#endif
if (EXT(ctx)->regs_dirty) {
unsigned int state_count;
if (thread_set_state(EXT(ctx)->pid, x86_THREAD_STATE32, EXT(ctx)->regs, &state_count) != KERN_SUCCESS) {
int err = errno;
trace(LOG_ALWAYS, "error: thread_set_state failed: ctx %#lx, id %s, error %d %s",
ctx, ctx->id, err, errno_to_str(err));
errno = err;
return -1;
}
EXT(ctx)->regs_dirty = 0;
}
if (ptrace(PT_CONTINUE, EXT(ctx)->pid, 0, signal) < 0) {
int err = errno;
if (err == ESRCH) {
send_context_started_event(ctx);
return 0;
}
trace(LOG_ALWAYS, "error: ptrace(PT_CONTINUE, ...) failed: ctx %#lx, id %s, error %d %s",
ctx, ctx->id, err, errno_to_str(err));
errno = err;
return -1;
}
ctx->pending_signals &= ~(1 << signal);
if (syscall_never_returns(ctx)) {
EXT(ctx)->syscall_enter = 0;
EXT(ctx)->syscall_exit = 0;
EXT(ctx)->syscall_id = 0;
}
send_context_started_event(ctx);
return 0;
}
int context_single_step(Context * ctx) {
assert(is_dispatch_thread());
assert(context_has_state(ctx));
assert(ctx->stopped);
assert(!ctx->exited);
assert(!EXT(ctx)->pending_step);
if (skip_breakpoint(ctx, 1)) return 0;
if (syscall_never_returns(ctx)) return context_continue(ctx);
trace(LOG_CONTEXT, "context: single step ctx %#lx, id %S", ctx, ctx->id);
if (EXT(ctx)->regs_dirty) {
unsigned int state_count;
if (thread_set_state(EXT(ctx)->pid, x86_THREAD_STATE32, EXT(ctx)->regs, &state_count) != KERN_SUCCESS) {
int err = errno;
trace(LOG_ALWAYS, "error: thread_set_state failed: ctx %#lx, id %s, error %d %s",
ctx, ctx->id, err, errno_to_str(err));
errno = err;
return -1;
}
EXT(ctx)->regs_dirty = 0;
}
if (ptrace(PT_STEP, EXT(ctx)->pid, 0, 0) < 0) {
int err = errno;
if (err == ESRCH) {
EXT(ctx)->pending_step = 1;
send_context_started_event(ctx);
return 0;
}
trace(LOG_ALWAYS, "error: ptrace(PT_STEP, ...) failed: ctx %#lx, id %s, error %d %s",
ctx, ctx->id, err, errno_to_str(err));
errno = err;
return -1;
}
EXT(ctx)->pending_step = 1;
send_context_started_event(ctx);
return 0;
}
int context_resume(Context * ctx, int mode, ContextAddress range_start, ContextAddress range_end) {
switch (mode) {
case RM_RESUME:
return context_continue(ctx);
case RM_STEP_INTO:
return context_single_step(ctx);
case RM_TERMINATE:
ctx->pending_signals |= 1 << SIGKILL;
return context_continue(ctx);
}
errno = ERR_UNSUPPORTED;
return -1;
}
int context_can_resume(Context * ctx, int mode) {
switch (mode) {
case RM_RESUME:
return 1;
case RM_STEP_INTO:
case RM_TERMINATE:
return context_has_state(ctx);
}
return 0;
}
int context_write_mem(Context * ctx, ContextAddress address, void * buf, size_t size) {
/*
ContextAddress word_addr;
assert(is_dispatch_thread());
assert(!ctx->exited);
trace(LOG_CONTEXT, "context: write memory ctx %#lx, id %s, address %#lx, size %zu",
ctx, ctx->id, address, size);
assert(WORD_SIZE == sizeof(unsigned));
check_breakpoints_on_memory_write(ctx, address, buf, size);
for (word_addr = address & ~(WORD_SIZE - 1); word_addr < address + size; word_addr += WORD_SIZE) {
unsigned word = 0;
if (word_addr < address || word_addr + WORD_SIZE > address + size) {
int i;
errno = 0;
word = ptrace(PT_PEEKDATA, EXT(ctx)->pid, word_addr, 0);
if (errno != 0) {
int err = errno;
trace(LOG_CONTEXT, "error: ptrace(PT_PEEKDATA, ...) failed: ctx %#lx, id %s, error %d %s",
ctx, ctx->id, err, errno_to_str(err));
errno = err;
return -1;
}
for (i = 0; i < WORD_SIZE; i++) {
if (word_addr + i >= address && word_addr + i < address + size) {
((char *)&word)[i] = ((char *)buf)[word_addr + i - address];
}
}
}
else {
word = *(unsigned *)((char *)buf + (word_addr - address));
}
if (ptrace(PT_POKEDATA, EXT(ctx)->pid, word_addr, word) < 0) {
int err = errno;
trace(LOG_ALWAYS, "error: ptrace(PT_POKEDATA, ...) failed: ctx %#lx, id %s, error %d %s",
ctx, ctx->id, err, errno_to_str(err));
errno = err;
return -1;
}
}
*/
return 0;
}
int context_read_mem(Context * ctx, ContextAddress address, void * buf, size_t size) {
/*
ContextAddress word_addr;
assert(is_dispatch_thread());
assert(!ctx->exited);
trace(LOG_CONTEXT, "context: read memory ctx %#lx, id %s, address %#lx, size %zu",
ctx, ctx->id, address, size);
assert(WORD_SIZE == sizeof(unsigned));
for (word_addr = address & ~(WORD_SIZE - 1); word_addr < address + size; word_addr += WORD_SIZE) {
unsigned word = 0;
errno = 0;
word = ptrace(PT_PEEKDATA, EXT(ctx)->pid, word_addr, 0);
if (errno != 0) {
int err = errno;
trace(LOG_CONTEXT, "error: ptrace(PT_PEEKDATA, ...) failed: ctx %#lx, id %s, error %d %s",
ctx, ctx->id, err, errno_to_str(err));
errno = err;
return -1;
}
if (word_addr < address || word_addr + WORD_SIZE > address + size) {
int i;
for (i = 0; i < WORD_SIZE; i++) {
if (word_addr + i >= address && word_addr + i < address + size) {
((char *)buf)[word_addr + i - address] = ((char *)&word)[i];
}
}
}
else {
*(unsigned *)((char *)buf + (word_addr - address)) = word;
}
}
check_breakpoints_on_memory_read(ctx, address, buf, size);
*/
return 0;
}
#if ENABLE_ExtendedMemoryErrorReports
int context_get_mem_error_info(MemoryErrorInfo * info) {
if (mem_err_info.error == 0) {
set_errno(ERR_OTHER, "Extended memory error info not available");
return -1;
}
*info = mem_err_info;
return 0;
}
#endif
int context_write_reg(Context * ctx, RegisterDefinition * def, unsigned offs, unsigned size, void * buf) {
ContextExtensionDarwin * ext = EXT(ctx);
assert(is_dispatch_thread());
assert(context_has_state(ctx));
assert(ctx->stopped);
assert(!ctx->exited);
assert(offs + size <= def->size);
if (ext->regs_error) {
set_error_report_errno(ext->regs_error);
return -1;
}
memcpy((uint8_t *)ext->regs + def->offset + offs, buf, size);
ext->regs_dirty = 1;
return 0;
}
int context_read_reg(Context * ctx, RegisterDefinition * def, unsigned offs, unsigned size, void * buf) {
ContextExtensionDarwin * ext = EXT(ctx);
assert(is_dispatch_thread());
assert(context_has_state(ctx));
assert(ctx->stopped);
assert(!ctx->exited);
assert(offs + size <= def->size);
if (ext->regs_error) {
set_error_report_errno(ext->regs_error);
return -1;
}
memcpy(buf, (uint8_t *)ext->regs + def->offset + offs, size);
return 0;
}
unsigned context_word_size(Context * ctx) {
return sizeof(void *);
}
int context_get_canonical_addr(Context * ctx, ContextAddress addr,
Context ** canonical_ctx, ContextAddress * canonical_addr,
ContextAddress * block_addr, ContextAddress * block_size) {
/* Direct mapping, page size is irrelevant */
ContextAddress page_size = 0x100000;
assert(is_dispatch_thread());
*canonical_ctx = ctx->mem;
if (canonical_addr != NULL) *canonical_addr = addr;
if (block_addr != NULL) *block_addr = addr & ~(page_size - 1);
if (block_size != NULL) *block_size = page_size;
return 0;
}
Context * context_get_group(Context * ctx, int group) {
static Context * cpu_group = NULL;
switch (group) {
case CONTEXT_GROUP_INTERCEPT:
return ctx;
case CONTEXT_GROUP_CPU:
if (cpu_group == NULL) cpu_group = create_context("CPU");
return cpu_group;
}
return ctx->mem;
}
int context_get_supported_bp_access_types(Context * ctx) {
return 0;
}
int context_plant_breakpoint(ContextBreakpoint * bp) {
errno = ERR_UNSUPPORTED;
return -1;
}
int context_unplant_breakpoint(ContextBreakpoint * bp) {
errno = ERR_UNSUPPORTED;
return -1;
}
int context_get_memory_map(Context * ctx, MemoryMap * map) {
ctx = ctx->mem;
assert(!ctx->exited);
return 0;
}
static Context * find_pending(pid_t pid) {
LINK * l = pending_list.next;
while (l != &pending_list) {
Context * c = ctxl2ctxp(l);
if (EXT(c)->pid == pid) {
list_remove(&c->ctxl);
return c;
}
l = l->next;
}
return NULL;
}
static void event_pid_exited(pid_t pid, int status, int signal) {
Context * ctx;
ctx = context_find_from_pid(pid, 1);
if (ctx == NULL) {
ctx = find_pending(pid);
if (ctx == NULL) {
trace(LOG_EVENTS, "event: ctx not found, pid %d, exit status %d, term signal %d", pid, status, signal);
}
else {
assert(ctx->ref_count == 0);
if (EXT(ctx)->attach_callback != NULL) {
if (status == 0) status = EINVAL;
EXT(ctx)->attach_callback(status, ctx, EXT(ctx)->attach_data);
}
assert(list_is_empty(&ctx->children));
assert(ctx->parent == NULL);
ctx->exited = 1;
ctx->ref_count = 1;
context_unlock(ctx);
}
}
else {
/* Note: ctx->exiting should be 1 here. However, PTRACE_EVENT_EXIT can be lost by PTRACE because of racing
* between PTRACE_CONT (or PTRACE_SYSCALL) and SIGTRAP/PTRACE_EVENT_EXIT. So, ctx->exiting can be 0.
*/
if (EXT(ctx->parent)->pid == pid) ctx = ctx->parent;
assert(EXT(ctx)->attach_callback == NULL);
if (ctx->exited) {
trace(LOG_EVENTS, "event: ctx %#lx, pid %d, exit status %d unexpected, stopped %d, exited %d",
ctx, pid, status, ctx->stopped, ctx->exited);
}
else {
trace(LOG_EVENTS, "event: ctx %#lx, pid %d, exit status %d, term signal %d", ctx, pid, status, signal);
ctx->exiting = 1;
if (ctx->stopped) send_context_started_event(ctx);
if (!list_is_empty(&ctx->children)) {
LINK * l = ctx->children.next;
while (l != &ctx->children) {
Context * c = cldl2ctxp(l);
l = l->next;
assert(c->parent == ctx);
if (!c->exited) {
c->exiting = 1;
if (c->stopped) send_context_started_event(c);
release_error_report(EXT(c)->regs_error);
loc_free(EXT(c)->regs);
EXT(c)->regs_error = NULL;
EXT(c)->regs = NULL;
send_context_exited_event(c);
}
}
}
release_error_report(EXT(ctx)->regs_error);
loc_free(EXT(ctx)->regs);
EXT(ctx)->regs_error = NULL;
EXT(ctx)->regs = NULL;
send_context_exited_event(ctx);
}
}
}
static void event_pid_stopped(pid_t pid, int signal, int event, int syscall) {
int stopped_by_exception = 0;
unsigned long msg = 0;
Context * ctx = NULL;
Context * ctx2 = NULL;
trace(LOG_EVENTS, "event: pid %d stopped, signal %d", pid, signal);
ctx = context_find_from_pid(pid, 1);
if (ctx == NULL) {
ctx = find_pending(pid);
if (ctx != NULL) {
Context * prs = ctx;
assert(prs->ref_count == 0);
ctx = create_context(pid2id(pid, pid));
EXT(ctx)->pid = pid;
EXT(ctx)->regs = (REG_SET *)loc_alloc(sizeof(REG_SET));
ctx->pending_intercept = 1;
ctx->mem = prs;
ctx->parent = prs;
ctx->big_endian = prs->big_endian;
prs->ref_count++;
list_add_last(&ctx->cldl, &prs->children);
link_context(prs);
link_context(ctx);
send_context_created_event(prs);
send_context_created_event(ctx);
if (EXT(prs)->attach_callback) {
EXT(prs)->attach_callback(0, prs, EXT(prs)->attach_data);
EXT(prs)->attach_callback = NULL;
EXT(prs)->attach_data = NULL;
}
}
}
if (ctx == NULL) return;
assert(!ctx->exited);
assert(!EXT(ctx)->attach_callback);
if (signal != SIGSTOP && signal != SIGTRAP) {
assert(signal < 32);
ctx->pending_signals |= 1 << signal;
if ((ctx->sig_dont_stop & (1 << signal)) == 0) {
ctx->pending_intercept = 1;
stopped_by_exception = 1;
}
}
if (ctx->stopped) {
send_context_changed_event(ctx);
}
else {
thread_state_t state;
unsigned int state_count;
ContextAddress pc0 = 0;
ContextAddress pc1 = 0;
assert(!EXT(ctx)->regs_dirty);
EXT(ctx)->end_of_step = 0;
EXT(ctx)->ptrace_event = event;
ctx->signal = signal;
ctx->stopped_by_bp = 0;
ctx->stopped_by_exception = stopped_by_exception;
ctx->stopped = 1;
if (EXT(ctx)->regs_error) {
release_error_report(EXT(ctx)->regs_error);
EXT(ctx)->regs_error = NULL;
}
else {
pc0 = get_regs_PC(ctx);
}
if (thread_get_state(EXT(ctx)->pid, x86_THREAD_STATE32, EXT(ctx)->regs, &state_count) != KERN_SUCCESS) {
assert(errno != 0);
EXT(ctx)->regs_error = get_error_report(errno);
trace(LOG_ALWAYS, "error: thread_get_state failed; id %s, error %d %s",
ctx->id, errno, errno_to_str(errno));
}
else {
pc1 = get_regs_PC(ctx);
}
if (!EXT(ctx)->syscall_enter || EXT(ctx)->regs_error || pc0 != pc1) {
EXT(ctx)->syscall_enter = 0;
EXT(ctx)->syscall_exit = 0;
EXT(ctx)->syscall_id = 0;
EXT(ctx)->syscall_pc = 0;
}
trace(LOG_EVENTS, "event: pid %d stopped at PC = %#lx", pid, pc1);
if (signal == SIGTRAP && event == 0 && !syscall) {
size_t break_size = 0;
get_break_instruction(ctx, &break_size);
ctx->stopped_by_bp = !EXT(ctx)->regs_error && is_breakpoint_address(ctx, pc1 - break_size);
EXT(ctx)->end_of_step = !ctx->stopped_by_bp && EXT(ctx)->pending_step;
if (ctx->stopped_by_bp) set_regs_PC(ctx, pc1 - break_size);
}
EXT(ctx)->pending_step = 0;
send_context_stopped_event(ctx);
}
}
static void waitpid_listener(int pid, int exited, int exit_code, int signal, int event_code, int syscall, void * args) {
if (exited) {
event_pid_exited(pid, exit_code, signal);
}
else {
event_pid_stopped(pid, signal, event_code, syscall);
}
}
void init_contexts_sys_dep(void) {
list_init(&pending_list);
context_extension_offset = context_extension(sizeof(ContextExtensionDarwin));
add_waitpid_listener(waitpid_listener, NULL);
ini_context_pid_hash();
}
#endif /* if ENABLE_DebugContext */
#endif /* __APPLE__ */