blob: 9acdcfd82bacc6721ceb996ea20c2d6da531087a [file] [log] [blame]
/*******************************************************************************
* Copyright (c) 2007, 2014 IBM Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
*******************************************************************************/
package org.eclipse.wst.jsdt.internal.compiler.lookup;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import org.eclipse.wst.jsdt.core.JavaScriptCore;
import org.eclipse.wst.jsdt.core.compiler.CharOperation;
import org.eclipse.wst.jsdt.core.infer.InferredType;
import org.eclipse.wst.jsdt.internal.compiler.Compiler;
import org.eclipse.wst.jsdt.internal.compiler.ast.ASTNode;
import org.eclipse.wst.jsdt.internal.compiler.ast.AbstractMethodDeclaration;
import org.eclipse.wst.jsdt.internal.compiler.ast.CaseStatement;
import org.eclipse.wst.jsdt.internal.compiler.ast.CompilationUnitDeclaration;
import org.eclipse.wst.jsdt.internal.compiler.ast.ImportReference;
import org.eclipse.wst.jsdt.internal.compiler.classfmt.ClassFileConstants;
import org.eclipse.wst.jsdt.internal.compiler.impl.CompilerOptions;
import org.eclipse.wst.jsdt.internal.compiler.impl.ReferenceContext;
import org.eclipse.wst.jsdt.internal.compiler.problem.AbortCompilation;
import org.eclipse.wst.jsdt.internal.compiler.problem.ProblemReporter;
import org.eclipse.wst.jsdt.internal.compiler.util.HashtableOfObject;
import org.eclipse.wst.jsdt.internal.compiler.util.ObjectVector;
import org.eclipse.wst.jsdt.internal.core.Logger;
public abstract class Scope implements TypeConstants, TypeIds {
/* Scope kinds */
public final static int BLOCK_SCOPE = 1;
public final static int CLASS_SCOPE = 3;
public final static int COMPILATION_UNIT_SCOPE = 4;
public final static int METHOD_SCOPE = 2;
public final static int WITH_SCOPE = 5;
/* Argument Compatibilities */
public final static int NOT_COMPATIBLE = -1;
public final static int COMPATIBLE = 0;
public final static int AUTOBOX_COMPATIBLE = 1;
public final static int VARARGS_COMPATIBLE = 2;
/* Type Compatibilities */
public static final int EQUAL_OR_MORE_SPECIFIC = -1;
public static final int NOT_RELATED = 0;
public static final int MORE_GENERIC = 1;
public int kind;
public Scope parent;
/* Answer an int describing the relationship between the given types.
*
* NOT_RELATED
* EQUAL_OR_MORE_SPECIFIC : left is compatible with right
* MORE_GENERIC : right is compatible with left
*/
public static int compareTypes(TypeBinding left, TypeBinding right) {
if (left.isCompatibleWith(right))
return Scope.EQUAL_OR_MORE_SPECIFIC;
if (right.isCompatibleWith(left))
return Scope.MORE_GENERIC;
return Scope.NOT_RELATED;
}
public static TypeBinding getBaseType(char[] name) {
// list should be optimized (with most often used first)
int length = name.length;
if (length > 2 && length < 8) {
switch (name[0]) {
case 'i' :
if (length == 3 && name[1] == 'n' && name[2] == 't')
return TypeBinding.INT;
break;
case 'v' :
if (length == 4 && name[1] == 'o' && name[2] == 'i' && name[3] == 'd')
return TypeBinding.VOID;
break;
case 'b' :
if (length == 7
&& name[1] == 'o'
&& name[2] == 'o'
&& name[3] == 'l'
&& name[4] == 'e'
&& name[5] == 'a'
&& name[6] == 'n')
return TypeBinding.BOOLEAN;
break;
case 'c' :
if (length == 4 && name[1] == 'h' && name[2] == 'a' && name[3] == 'r')
return TypeBinding.CHAR;
break;
case 'd' :
if (length == 6
&& name[1] == 'o'
&& name[2] == 'u'
&& name[3] == 'b'
&& name[4] == 'l'
&& name[5] == 'e')
return TypeBinding.DOUBLE;
break;
case 'f' :
if (length == 5
&& name[1] == 'l'
&& name[2] == 'o'
&& name[3] == 'a'
&& name[4] == 't')
return TypeBinding.FLOAT;
break;
case 'l' :
if (length == 4 && name[1] == 'o' && name[2] == 'n' && name[3] == 'g')
return TypeBinding.LONG;
break;
case 's' :
if (length == 5
&& name[1] == 'h'
&& name[2] == 'o'
&& name[3] == 'r'
&& name[4] == 't')
return TypeBinding.SHORT;
}
}
return null;
}
protected Scope(int kind, Scope parent) {
this.kind = kind;
this.parent = parent;
}
/*
* Boxing primitive
*/
public TypeBinding boxing(TypeBinding type) {
if (type.isBaseType())
return environment().computeBoxingType(type);
return type;
}
public ClassScope classScope() {
Scope scope = this;
do {
if (scope instanceof ClassScope)
return (ClassScope) scope;
scope = scope.parent;
} while (scope != null);
return null;
}
public final CompilationUnitScope compilationUnitScope() {
Scope lastScope = null;
Scope scope = this;
do {
lastScope = scope;
scope = scope.parent;
} while (scope != null);
return (CompilationUnitScope) lastScope;
}
/**
* Finds the most specific compiler options
*/
public final CompilerOptions compilerOptions() {
return compilationUnitScope().environment.globalOptions;
}
/**
* Internal use only
* Given a method, returns null if arguments cannot be converted to parameters.
* Will answer a subsituted method in case the method was generic and type inference got triggered;
* in case the method was originally compatible, then simply answer it back.
*/
protected final MethodBinding computeCompatibleMethod(MethodBinding method, TypeBinding[] arguments, InvocationSite invocationSite) {
TypeBinding[] parameters = method.parameters;
if (parameters == arguments
// && (method.returnType.tagBits & TagBits.HasTypeVariable) == 0
)
return method;
int argLength = arguments.length;
int paramLength = parameters.length;
boolean isVarArgs = method.isVarargs();
if (argLength != paramLength)
if (!isVarArgs || argLength < paramLength - 1)
return null; // incompatible
if (parameterCompatibilityLevel(method, arguments) > NOT_COMPATIBLE)
return method;
return null; // incompatible
}
public ArrayBinding createArrayType(TypeBinding type, int dimension) {
if (type.isValidBinding())
return environment().createArrayType(type, dimension);
// do not cache obvious invalid types
return new ArrayBinding(type, dimension, environment());
}
public final ClassScope enclosingClassScope() {
Scope scope = this;
while ((scope = scope.parent) != null) {
if (scope instanceof ClassScope) return (ClassScope) scope;
}
return null; // may answer null if no type around
}
public final MethodScope enclosingMethodScope() {
Scope scope = this;
if (scope instanceof MethodScope) return (MethodScope) scope;
while ((scope = scope.parent) != null) {
if (scope instanceof MethodScope) return (MethodScope) scope;
}
return null; // may answer null if no method around
}
/* Answer the scope receiver type (could be parameterized)
*/
public final ReferenceBinding enclosingReceiverType() {
Scope scope = this;
AbstractMethodDeclaration inMethod =null;
do {
if (scope instanceof MethodScope) {
MethodScope methodScope = (MethodScope) scope;
inMethod = methodScope.referenceMethod();
if (inMethod.inferredMethod!=null && inMethod.inferredMethod.inType!=null && inMethod.inferredMethod.inType.binding!=null)
return inMethod.inferredMethod.inType.binding;
}
else if (scope instanceof CompilationUnitScope) {
CompilationUnitScope compilationUnitScope = (CompilationUnitScope) scope;
for (int i=0;i<compilationUnitScope.referenceContext.numberInferredTypes;i++)
{
InferredType type= compilationUnitScope.referenceContext.inferredTypes[i];
if (type.containsMethod(inMethod))
return (ReferenceBinding)compilationUnitScope.getTypeOrPackage(type.getName(),Binding.TYPE);
}
}
if (scope instanceof ClassScope) {
ClassScope classScope=(ClassScope)scope;
if (classScope.referenceContext!=null)
return classScope.referenceContext.binding;
if (classScope.inferredType!=null)
return classScope.inferredType.binding;
// return environment().convertToParameterizedType(((ClassScope) scope).referenceContext.binding);
}
scope = scope.parent;
} while (scope != null);
return null;
}
public final CompilationUnitBinding enclosingCompilationUnit() {
Scope scope = this;
do {
if (scope instanceof CompilationUnitScope) {
return ((CompilationUnitScope) scope).referenceContext.compilationUnitBinding;
}
scope = scope.parent;
} while (scope != null);
return null;
}
/**
* Returns the immediately enclosing reference context, starting from current scope parent.
* If starting on a class, it will skip current class. If starting on unitScope, returns null.
*/
public ReferenceContext enclosingReferenceContext() {
Scope current = this;
while ((current = current.parent) != null) {
switch(current.kind) {
case METHOD_SCOPE :
return ((MethodScope) current).referenceContext;
case CLASS_SCOPE :
return ((ClassScope) current).referenceContext;
case COMPILATION_UNIT_SCOPE :
return ((CompilationUnitScope) current).referenceContext;
}
}
return null;
}
/* Answer the scope enclosing source type (could be generic)
*/
public final SourceTypeBinding enclosingSourceType() {
Scope scope = this;
do {
if (scope instanceof ClassScope)
return ((ClassScope) scope).getReferenceBinding();
else if(scope instanceof CompilationUnitScope)
return ((CompilationUnitScope) scope).referenceContext.compilationUnitBinding;
scope = scope.parent;
} while (scope != null);
return null;
}
public final SourceTypeBinding enclosingTypeBinding() {
Scope scope = this;
do {
if (scope instanceof ClassScope)
return ((ClassScope) scope).getReferenceBinding();
else if (scope instanceof CompilationUnitScope)
return ((CompilationUnitScope) scope).referenceContext.compilationUnitBinding;
scope = scope.parent;
} while (scope != null);
return null;
}
public final LookupEnvironment environment() {
Scope scope, unitScope = this;
while ((scope = unitScope.parent) != null)
unitScope = scope;
return ((CompilationUnitScope) unitScope).environment;
}
// abstract method lookup lookup (since maybe missing default abstract methods)
protected MethodBinding findDefaultAbstractMethod(
ReferenceBinding receiverType,
char[] selector,
TypeBinding[] argumentTypes,
InvocationSite invocationSite,
ReferenceBinding classHierarchyStart,
ObjectVector found,
MethodBinding concreteMatch) {
int startFoundSize = found.size;
MethodBinding[] candidates = null;
int candidatesCount = 0;
MethodBinding problemMethod = null;
int foundSize = found.size;
if (foundSize > startFoundSize) {
// argument type compatibility check
for (int i = startFoundSize; i < foundSize; i++) {
MethodBinding methodBinding = (MethodBinding) found.elementAt(i);
MethodBinding compatibleMethod = computeCompatibleMethod(methodBinding, argumentTypes, invocationSite);
if (compatibleMethod != null) {
if (compatibleMethod.isValidBinding()) {
if (candidatesCount == 0) {
candidates = new MethodBinding[foundSize - startFoundSize + 1];
if (concreteMatch != null)
candidates[candidatesCount++] = concreteMatch;
}
candidates[candidatesCount++] = compatibleMethod;
} else if (problemMethod == null) {
problemMethod = compatibleMethod;
}
}
}
}
if (candidatesCount < 2) {
if (concreteMatch == null) {
if (candidatesCount == 0)
return problemMethod; // can be null
concreteMatch = candidates != null ? candidates[0] : null;
}
return concreteMatch;
}
// no need to check for visibility - interface methods are public
if (compilerOptions().complianceLevel >= ClassFileConstants.JDK1_4)
return mostSpecificMethodBinding(candidates, candidatesCount, argumentTypes, invocationSite, receiverType);
return null;
}
// Internal use only
public ReferenceBinding findDirectMemberType(char[] typeName, ReferenceBinding enclosingType) {
if ((enclosingType.tagBits & TagBits.HasNoMemberTypes) != 0)
return null; // know it has no member types (nor inherited member types)
ReferenceBinding enclosingReceiverType = enclosingReceiverType();
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordReference(enclosingType, typeName);
ReferenceBinding memberType = enclosingType.getMemberType(typeName);
if (memberType != null) {
unitScope.recordTypeReference(memberType);
if (enclosingReceiverType == null
? memberType.canBeSeenBy(getCurrentPackage())
: memberType.canBeSeenBy(enclosingType, enclosingReceiverType))
return memberType;
return new ProblemReferenceBinding(typeName, memberType, ProblemReasons.NotVisible);
}
return null;
}
// Internal use only
public MethodBinding findExactMethod(
ReferenceBinding receiverType,
char[] selector,
TypeBinding[] argumentTypes,
InvocationSite invocationSite) {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordTypeReferences(argumentTypes);
MethodBinding exactMethod = (receiverType!=null) ?
receiverType.getExactMethod(selector, argumentTypes, unitScope) :
unitScope.referenceContext.compilationUnitBinding.getExactMethod(selector, argumentTypes, unitScope);
if (exactMethod != null && !exactMethod.isBridge()) {
// must find both methods for this case: <S extends A> void foo() {} and <N extends B> N foo() { return null; }
// or find an inherited method when the exact match is to a bridge method
// special treatment for Object.getClass() in 1.5 mode (substitute parameterized return type)
if (exactMethod.canBeSeenBy(receiverType, invocationSite, this)) {
return exactMethod;
}
}
return null;
}
// Internal use only
/* Answer the field binding that corresponds to fieldName.
Start the lookup at the receiverType.
InvocationSite implements
isSuperAccess(); this is used to determine if the discovered field is visible.
Only fields defined by the receiverType or its supertypes are answered;
a field of an enclosing type will not be found using this API.
If no visible field is discovered, null is answered.
*/
public FieldBinding findField(TypeBinding receiverType, char[] fieldName, InvocationSite invocationSite, boolean needResolve) {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordTypeReference(receiverType);
checkArrayField: {
switch (receiverType.kind()) {
case Binding.BASE_TYPE :
return null;
default:
break checkArrayField;
}
}
ReferenceBinding currentType = (ReferenceBinding) receiverType;
if (!currentType.canBeSeenBy(this))
return new ProblemFieldBinding(currentType, fieldName, ProblemReasons.ReceiverTypeNotVisible);
FieldBinding field = currentType.getField(fieldName, needResolve);
if (field != null) {
if (invocationSite == null
? field.canBeSeenBy(getCurrentPackage())
: field.canBeSeenBy(currentType, invocationSite, this))
return field;
return new ProblemFieldBinding(field /* closest match*/, field.declaringClass, fieldName, ProblemReasons.NotVisible);
}
// collect all superinterfaces of receiverType until the field is found in a supertype
FieldBinding visibleField = null;
boolean keepLooking = true;
FieldBinding notVisibleField = null;
// we could hold onto the not visible field for extra error reporting
Set checkedParents = new HashSet();
while (keepLooking) {
if (JavaScriptCore.IS_ECMASCRIPT4)
{
((SourceTypeBinding) currentType).classScope.connectTypeHierarchy();
}
if ((currentType = currentType.getSuperBinding()) == null) {
break;
}
/* if current type is already a parent that was check break to prevent
* infinite loop. This can happen if something gets messed up with
* the parentage of a type and there ends up being a parentage loop.
*
* else add the current type to the checked parents and continue on
*/
if(checkedParents.contains(currentType)) {
break;
} else {
checkedParents.add(currentType);
}
unitScope.recordTypeReference(currentType);
if ((field = currentType.getField(fieldName, needResolve)) != null) {
keepLooking = false;
if (field.canBeSeenBy(receiverType, invocationSite, this)) {
if (visibleField == null)
visibleField = field;
else
return new ProblemFieldBinding(visibleField /* closest match*/, visibleField.declaringClass, fieldName, ProblemReasons.Ambiguous);
} else {
if (notVisibleField == null)
notVisibleField = field;
}
}
}
if (visibleField != null)
return visibleField;
if (notVisibleField != null) {
return new ProblemFieldBinding(notVisibleField, currentType, fieldName, ProblemReasons.NotVisible);
}
return null;
}
// Internal use only
public ReferenceBinding findMemberType(char[] typeName, ReferenceBinding enclosingType) {
if ((enclosingType.tagBits & TagBits.HasNoMemberTypes) != 0)
return null; // know it has no member types (nor inherited member types)
ReferenceBinding enclosingSourceType = enclosingSourceType();
PackageBinding currentPackage = getCurrentPackage();
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordReference(enclosingType, typeName);
ReferenceBinding memberType = enclosingType.getMemberType(typeName);
if (memberType != null) {
unitScope.recordTypeReference(memberType);
if (enclosingSourceType == null
? memberType.canBeSeenBy(currentPackage)
: memberType.canBeSeenBy(enclosingType, enclosingSourceType))
return memberType;
return new ProblemReferenceBinding(typeName, memberType, ProblemReasons.NotVisible);
}
// collect all superinterfaces of receiverType until the memberType is found in a supertype
ReferenceBinding currentType = enclosingType;
ReferenceBinding[] interfacesToVisit = null;
int nextPosition = 0;
ReferenceBinding visibleMemberType = null;
boolean keepLooking = true;
ReferenceBinding notVisible = null;
// we could hold onto the not visible field for extra error reporting
Set checkedParents = new HashSet();
while (keepLooking) {
ReferenceBinding sourceType = currentType;
if (sourceType.isHierarchyBeingConnected())
return null; // looking for an undefined member type in its own superclass ref
((SourceTypeBinding) sourceType).classScope.connectTypeHierarchy();
if ((currentType = currentType.getSuperBinding()) == null) {
break;
}
/* if current type is already a parent that was check break to prevent
* infinite loop. This can happen if something gets messed up with
* the parentage of a type and there ends up being a parentage loop.
*
* else add the current type to the checked parents and continue on
*/
if(checkedParents.contains(currentType)) {
break;
} else {
checkedParents.add(currentType);
}
unitScope.recordReference(currentType, typeName);
if ((memberType = currentType.getMemberType(typeName)) != null) {
unitScope.recordTypeReference(memberType);
keepLooking = false;
if (enclosingSourceType == null
? memberType.canBeSeenBy(currentPackage)
: memberType.canBeSeenBy(enclosingType, enclosingSourceType)) {
if (visibleMemberType == null)
visibleMemberType = memberType;
else
return new ProblemReferenceBinding(typeName, visibleMemberType, ProblemReasons.Ambiguous);
} else {
notVisible = memberType;
}
}
}
// walk all visible interfaces to find ambiguous references
if (interfacesToVisit != null) {
ProblemReferenceBinding ambiguous = null;
done : for (int i = 0; i < nextPosition; i++) {
ReferenceBinding anInterface = interfacesToVisit[i];
unitScope.recordReference(anInterface, typeName);
if ((memberType = anInterface.getMemberType(typeName)) != null) {
unitScope.recordTypeReference(memberType);
if (visibleMemberType == null) {
visibleMemberType = memberType;
} else {
ambiguous = new ProblemReferenceBinding(typeName, visibleMemberType, ProblemReasons.Ambiguous);
break done;
}
}
}
if (ambiguous != null)
return ambiguous;
}
if (visibleMemberType != null)
return visibleMemberType;
if (notVisible != null)
return new ProblemReferenceBinding(typeName, notVisible, ProblemReasons.NotVisible);
return null;
}
/**
* <b>NOTE: </b> Internal use only - use findMethod()
*
* @param receiverType
* @param selector
* @param argumentTypes <code>null</code> means match on any arguments
* @param invocationSite
* @return
*/
public MethodBinding findMethod(ReferenceBinding receiverType, char[] selector, TypeBinding[] argumentTypes, InvocationSite invocationSite) {
ReferenceBinding currentType = receiverType;
ObjectVector found = new ObjectVector(3);
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordTypeReferences(argumentTypes);
if (receiverType==null)
{
MethodBinding methodBinding = unitScope.referenceContext.compilationUnitBinding.getExactMethod(selector,argumentTypes, unitScope);
if (methodBinding==null)
methodBinding= new ProblemMethodBinding(selector, argumentTypes, ProblemReasons.NotFound);
return methodBinding;
}
// superclass lookup
long complianceLevel = compilerOptions().complianceLevel;
boolean isCompliant14 = complianceLevel >= ClassFileConstants.JDK1_4;
boolean isCompliant15 = complianceLevel >= ClassFileConstants.JDK1_5;
ReferenceBinding classHierarchyStart = currentType;
Set checkedParents = new HashSet();
while (currentType != null) {
/* if current type is already a parent that was check break to prevent
* infinite loop. This can happen if something gets messed up with
* the parentage of a type and there ends up being a parentage loop.
*
* else add the current type to the checked parents and continue on
*/
if(checkedParents.contains(currentType)) {
break;
} else {
checkedParents.add(currentType);
}
unitScope.recordTypeReference(currentType);
MethodBinding[] currentMethods = currentType.getMethods(selector);
int currentLength = currentMethods.length;
if (currentLength > 0) {
if (isCompliant14 && (found.size > 0)) {
nextMethod: for (int i = 0, l = currentLength; i < l; i++) { // currentLength can be modified inside the loop
MethodBinding currentMethod = currentMethods[i];
if (currentMethod == null) continue nextMethod;
// if 1.4 compliant, must filter out redundant protected methods from superclasses
// protected method need to be checked only - default access is already dealt with in #canBeSeen implementation
// when checking that p.C -> q.B -> p.A cannot see default access members from A through B.
// if ((currentMethod.modifiers & AccProtected) == 0) continue nextMethod;
// BUT we can also ignore any overridden method since we already know the better match (fixes 80028)
for (int j = 0, max = found.size; j < max; j++) {
MethodBinding matchingMethod = (MethodBinding) found.elementAt(j);
if (currentMethod.areParametersEqual(matchingMethod)) {
if (isCompliant15) {
if (matchingMethod.isBridge() && !currentMethod.isBridge())
continue nextMethod; // keep inherited methods to find concrete method over a bridge method
}
currentLength--;
currentMethods[i] = null;
continue nextMethod;
}
}
}
}
if (currentLength > 0) {
// append currentMethods, filtering out null entries
if (currentMethods.length == currentLength) {
found.addAll(currentMethods);
} else {
for (int i = 0, max = currentMethods.length; i < max; i++) {
MethodBinding currentMethod = currentMethods[i];
if (currentMethod != null)
found.add(currentMethod);
}
}
}
}
currentType = currentType.getSuperBinding();
}
if (found.size==0 && (receiverType==null || receiverType instanceof CompilationUnitBinding))
{
Binding binding = getTypeOrPackage(selector, Binding.METHOD);
if (binding instanceof MethodBinding)
{
((MethodBinding) binding).ensureBindingsAreComplete();
found.add(binding);
}
}
// if found several candidates, then eliminate those not matching argument types
int foundSize = found.size;
MethodBinding[] candidates = null;
int candidatesCount = 0;
MethodBinding problemMethod = null;
if (foundSize > 0) {
// argument type compatibility check
for (int i = 0; i < foundSize; i++) {
MethodBinding methodBinding = (MethodBinding) found.elementAt(i);
MethodBinding compatibleMethod = methodBinding;//computeCompatibleMethod(methodBinding, argumentTypes, invocationSite);
if (compatibleMethod != null) {
if (compatibleMethod.isValidBinding()) {
if (foundSize == 1 && compatibleMethod.canBeSeenBy(receiverType, invocationSite, this)) {
// return the single visible match now
return compatibleMethod;
}
if (candidatesCount == 0)
candidates = new MethodBinding[foundSize];
candidates[candidatesCount++] = compatibleMethod;
} else if (problemMethod == null) {
problemMethod = compatibleMethod;
}
}
}
}
// no match was found
if (candidatesCount == 0) {
// abstract classes may get a match in interfaces; for non abstract
// classes, reduces secondary errors since missing interface method
// error is already reported
MethodBinding interfaceMethod =
findDefaultAbstractMethod(receiverType, selector, argumentTypes, invocationSite, classHierarchyStart, found, null);
if (interfaceMethod != null) return interfaceMethod;
if (found.size == 0) return null;
if (problemMethod != null) return problemMethod;
// still no match; try to find a close match when the parameter
// order is wrong or missing some parameters
// see https://bugs.eclipse.org/bugs/show_bug.cgi?id=69471
// bad guesses are foo(), when argument types have been supplied
// and foo(X, Y), when the argument types are (int, float, Y)
// so answer the method with the most argType matches and least parameter type mismatches
int bestArgMatches = -1;
MethodBinding bestGuess = (MethodBinding) found.elementAt(0); // if no good match so just use the first one found
int argLength = argumentTypes.length;
foundSize = found.size;
nextMethod : for (int i = 0; i < foundSize; i++) {
MethodBinding methodBinding = (MethodBinding) found.elementAt(i);
TypeBinding[] params = methodBinding.parameters;
int paramLength = params.length;
int argMatches = 0;
next: for (int a = 0; a < argLength; a++) {
TypeBinding arg = argumentTypes[a];
for (int p = a == 0 ? 0 : a - 1; p < paramLength && p < a + 1; p++) { // look one slot before & after to see if the type matches
if (params[p] == arg) {
argMatches++;
continue next;
}
}
}
if (argMatches < bestArgMatches)
continue nextMethod;
if (argMatches == bestArgMatches) {
int diff1 = paramLength < argLength ? 2 * (argLength - paramLength) : paramLength - argLength;
int bestLength = bestGuess.parameters.length;
int diff2 = bestLength < argLength ? 2 * (argLength - bestLength) : bestLength - argLength;
if (diff1 >= diff2)
continue nextMethod;
}
bestArgMatches = argMatches;
bestGuess = methodBinding;
}
return bestGuess;
// return new ProblemMethodBinding(bestGuess, bestGuess.selector, argumentTypes, ProblemReasons.NotFound);
}
// tiebreak using visibility check
int visiblesCount = 0;
for (int i = 0; i < candidatesCount; i++) {
MethodBinding methodBinding = candidates[i];
if (methodBinding.canBeSeenBy(receiverType, invocationSite,
this)) {
if (visiblesCount != i) {
candidates[i] = null;
candidates[visiblesCount] = methodBinding;
}
visiblesCount++;
}
}
if (visiblesCount == 1) {
return candidates[0];
}
if (visiblesCount == 0) {
MethodBinding interfaceMethod = findDefaultAbstractMethod(
receiverType, selector, argumentTypes, invocationSite,
classHierarchyStart, found, null);
if (interfaceMethod != null)
return interfaceMethod;
return new ProblemMethodBinding(candidates[0],
candidates[0].selector, candidates[0].parameters,
ProblemReasons.NotVisible);
}
if (complianceLevel <= ClassFileConstants.JDK1_3) {
ReferenceBinding declaringClass = candidates[0].declaringClass;
return mostSpecificClassMethodBinding(candidates, visiblesCount, invocationSite);
}
MethodBinding mostSpecificMethod = mostSpecificMethodBinding(candidates, visiblesCount, argumentTypes, invocationSite, receiverType);
return mostSpecificMethod;
}
// Internal use only
public MethodBinding findMethodForArray(
ArrayBinding receiverType,
char[] selector,
TypeBinding[] argumentTypes,
InvocationSite invocationSite) {
TypeBinding leafType = receiverType.leafComponentType();
if (leafType instanceof ReferenceBinding) {
if (!((ReferenceBinding) leafType).canBeSeenBy(this))
return new ProblemMethodBinding(selector, Binding.NO_PARAMETERS, (ReferenceBinding)leafType, ProblemReasons.ReceiverTypeNotVisible);
}
ReferenceBinding object = getJavaLangObject();
MethodBinding methodBinding = object.getExactMethod(selector, argumentTypes, null);
if (methodBinding != null) {
// handle the method clone() specially... cannot be protected or throw exceptions
if (argumentTypes == Binding.NO_PARAMETERS) {
switch (selector[0]) {
case 'c':
break;
case 'g':
break;
}
}
if (methodBinding.canBeSeenBy(receiverType, invocationSite, this))
return methodBinding;
}
methodBinding = findMethod(object, selector, argumentTypes, invocationSite);
if (methodBinding == null)
return new ProblemMethodBinding(selector, argumentTypes, ProblemReasons.NotFound);
return methodBinding;
}
// Internal use only
public Binding findBinding(
char[] typeName,
int mask,
PackageBinding declarationPackage,
PackageBinding invocationPackage, boolean searchEnvironment) {
compilationUnitScope().recordReference(declarationPackage.compoundName, typeName);
Binding typeBinding =
(searchEnvironment) ? declarationPackage.getBinding(typeName,mask) :
declarationPackage.getBinding0(typeName, mask);
if (typeBinding == null)
return null;
if (typeBinding.isValidBinding()) {
if (declarationPackage != invocationPackage && typeBinding instanceof ReferenceBinding
&& !((ReferenceBinding)typeBinding).canBeSeenBy(invocationPackage))
return new ProblemReferenceBinding(typeName,(ReferenceBinding) typeBinding, ProblemReasons.NotVisible);
}
return typeBinding;
}
// Internal use only
public ReferenceBinding findType(
char[] typeName,
PackageBinding declarationPackage,
PackageBinding invocationPackage) {
return (ReferenceBinding)findBinding(typeName, Binding.TYPE, declarationPackage, invocationPackage, true);
}
public LocalVariableBinding findVariable(char[] variable) {
return null;
}
/* API
*
* Answer the binding that corresponds to the argument name.
* flag is a mask of the following values VARIABLE (= FIELD or LOCAL), TYPE, PACKAGE.
* Only bindings corresponding to the mask can be answered.
*
* For example, getBinding("foo", VARIABLE, site) will answer
* the binding for the field or local named "foo" (or an error binding if none exists).
* If a type named "foo" exists, it will not be detected (and an error binding will be answered)
*
* The VARIABLE mask has precedence over the TYPE mask.
*
* If the VARIABLE mask is not set, neither fields nor locals will be looked for.
*
* InvocationSite implements:
* isSuperAccess(); this is used to determine if the discovered field is visible.
*
* Limitations: cannot request FIELD independently of LOCAL, or vice versa
*/
public Binding getBinding(char[] name, int mask, InvocationSite invocationSite, boolean needResolve) {
CompilationUnitScope unitScope = compilationUnitScope();
LookupEnvironment env = unitScope.environment;
try {
env.missingClassFileLocation = invocationSite;
Binding binding = null;
FieldBinding problemField = null;
if ((mask & Binding.VARIABLE) != 0) {
boolean insideStaticContext = false;
boolean insideConstructorCall = false;
FieldBinding foundField = null;
// can be a problem field which is answered if a valid field is not found
ProblemFieldBinding foundInsideProblem = null;
// inside Constructor call or inside static context
Scope scope = this;
int depth = 0;
int foundDepth = 0;
ReferenceBinding foundActualReceiverType = null;
done : while (true) { // done when a COMPILATION_UNIT_SCOPE is found
switch (scope.kind) {
case METHOD_SCOPE :
MethodScope methodScope = (MethodScope) scope;
insideStaticContext |= methodScope.isStatic;
insideConstructorCall |= methodScope.isConstructorCall;
// Fall through... could duplicate the code below to save a cast - questionable optimization
case BLOCK_SCOPE :
LocalVariableBinding variableBinding = scope.findVariable(name);
// looks in this scope only
if (variableBinding != null) {
if (foundField != null && foundField.isValidBinding())
return new ProblemFieldBinding(
foundField, // closest match
foundField.declaringClass,
name,
ProblemReasons.InheritedNameHidesEnclosingName);
if (depth > 0)
invocationSite.setDepth(depth);
return variableBinding;
}
break;
case CLASS_SCOPE :
ClassScope classScope = (ClassScope) scope;
ReferenceBinding receiverType = classScope.enclosingReceiverType();
FieldBinding fieldBinding = classScope.findField(receiverType, name, invocationSite, needResolve);
// Use next line instead if willing to enable protected access accross inner types
// FieldBinding fieldBinding = findField(enclosingType, name, invocationSite);
if (fieldBinding != null) { // skip it if we did not find anything
if (fieldBinding.problemId() == ProblemReasons.Ambiguous) {
if (foundField == null || foundField.problemId() == ProblemReasons.NotVisible)
// supercedes any potential InheritedNameHidesEnclosingName problem
return fieldBinding;
// make the user qualify the field, likely wants the first inherited field (javac generates an ambiguous error instead)
return new ProblemFieldBinding(
foundField, // closest match
foundField.declaringClass,
name,
ProblemReasons.InheritedNameHidesEnclosingName);
}
ProblemFieldBinding insideProblem = null;
if (fieldBinding.isValidBinding()) {
if (!fieldBinding.isStatic()) {
if (insideConstructorCall) {
insideProblem =
new ProblemFieldBinding(
fieldBinding, // closest match
fieldBinding.declaringClass,
name,
ProblemReasons.NonStaticReferenceInConstructorInvocation);
} else if (insideStaticContext) {
insideProblem =
new ProblemFieldBinding(
fieldBinding, // closest match
fieldBinding.declaringClass,
name,
ProblemReasons.NonStaticReferenceInStaticContext);
}
}
if (receiverType == fieldBinding.declaringClass || compilerOptions().complianceLevel >= ClassFileConstants.JDK1_4) {
// found a valid field in the 'immediate' scope (ie. not inherited)
// OR in 1.4 mode (inherited shadows enclosing)
if (foundField == null) {
if (depth > 0){
invocationSite.setDepth(depth);
invocationSite.setActualReceiverType(receiverType);
}
// return the fieldBinding if it is not declared in a superclass of the scope's binding (that is, inherited)
return insideProblem == null ? fieldBinding : insideProblem;
}
if (foundField.isValidBinding())
// if a valid field was found, complain when another is found in an 'immediate' enclosing type (that is, not inherited)
if (foundField.declaringClass != fieldBinding.declaringClass)
// ie. have we found the same field - do not trust field identity yet
return new ProblemFieldBinding(
foundField, // closest match
foundField.declaringClass,
name,
ProblemReasons.InheritedNameHidesEnclosingName);
}
}
if (foundField == null || (foundField.problemId() == ProblemReasons.NotVisible && fieldBinding.problemId() != ProblemReasons.NotVisible)) {
// only remember the fieldBinding if its the first one found or the previous one was not visible & fieldBinding is...
foundDepth = depth;
foundActualReceiverType = receiverType;
foundInsideProblem = insideProblem;
foundField = fieldBinding;
}
}
depth++;
insideStaticContext |= receiverType.isStatic();
// 1EX5I8Z - accessing outer fields within a constructor call is permitted
// in order to do so, we change the flag as we exit from the type, not the method
// itself, because the class scope is used to retrieve the fields.
MethodScope enclosingMethodScope = scope.methodScope();
insideConstructorCall = enclosingMethodScope == null ? false : enclosingMethodScope.isConstructorCall;
break;
case WITH_SCOPE :
WithScope withScope = (WithScope) scope;
TypeBinding withType = withScope.referenceContext;
fieldBinding = withScope.findField(withType, name, invocationSite, needResolve);
// Use next line instead if willing to enable protected access accross inner types
// FieldBinding fieldBinding = findField(enclosingType, name, invocationSite);
if (fieldBinding != null) { // skip it if we did not find anything
if (fieldBinding.isValidBinding()) {
return fieldBinding;
}
}
break;
case COMPILATION_UNIT_SCOPE :
if ( (mask & (Binding.FIELD|Binding.VARIABLE)) >0)
{
variableBinding = scope.findVariable(name);
// looks in this scope only
if (variableBinding != null) {
if (foundField != null && foundField.isValidBinding())
return new ProblemFieldBinding(
foundField, // closest match
foundField.declaringClass,
name,
ProblemReasons.InheritedNameHidesEnclosingName);
if (depth > 0)
invocationSite.setDepth(depth);
return variableBinding;
}
if(unitScope.classScope()!=null) {
//ReferenceBinding bind = env.getType(new char[][]{unitScope.superTypeName});
//if(bind==null) break done;
foundField = (unitScope.classScope()).findField(unitScope.superBinding, name, invocationSite, true);
if(foundField!=null && foundField.isValidBinding()) {
return foundField;
}
}
}else if ( (mask & (Binding.METHOD)) >0){
MethodBinding methodBinding = (unitScope.classScope()).findMethod(unitScope.superBinding, name, new TypeBinding[0], invocationSite);
if(methodBinding!=null && methodBinding.isValidBinding()) return methodBinding;
}
break done;
}
scope = scope.parent;
}
if (foundInsideProblem != null)
return foundInsideProblem;
if (foundField != null) {
if (foundField.isValidBinding()) {
if (foundDepth > 0) {
invocationSite.setDepth(foundDepth);
invocationSite.setActualReceiverType(foundActualReceiverType);
}
return foundField;
}
problemField = foundField;
foundField = null;
}
}
if ( (mask&Binding.METHOD)!=0)
{
Scope scope = this;
done : while (true) { // done when a COMPILATION_UNIT_SCOPE is found
switch (scope.kind) {
case METHOD_SCOPE :
MethodScope methodScope = (MethodScope) scope;
binding = methodScope.findMethod(name, Binding.NO_PARAMETERS,true);
if (binding!=null)
return binding;
break;
case WITH_SCOPE :
WithScope withScope = (WithScope) scope;
ReferenceBinding withType = withScope.referenceContext;
// retrieve an exact visible match (if possible)
// compilationUnitScope().recordTypeReference(receiverType); not needed since receiver is the source type
MethodBinding methBinding = withScope.findExactMethod(withType, name, Binding.NO_PARAMETERS, invocationSite);
if (methBinding == null)
methBinding = withScope.findMethod(withType,name, Binding.NO_PARAMETERS, invocationSite);
if (methBinding != null) { // skip it if we did not find anything
if (methBinding.isValidBinding()) {
return methBinding;
}
}
break;
case CLASS_SCOPE :
ClassScope classScope = (ClassScope) scope;
ReferenceBinding receiverType = classScope.enclosingReceiverType();
break;
case COMPILATION_UNIT_SCOPE :
CompilationUnitScope compilationUnitScope = (CompilationUnitScope) scope;
CompilationUnitBinding compilationUnitBinding = compilationUnitScope.enclosingCompilationUnit();
receiverType = compilationUnitBinding;
MethodBinding methodBinding =
compilationUnitScope.findExactMethod(receiverType, name, Binding.NO_PARAMETERS, invocationSite);
if (methodBinding != null) { // skip it if we did not find anything
return methodBinding;
}
break done;
}
scope = scope.parent;
}
}
// We did not find a local or instance variable.
if ((mask & Binding.TYPE|Binding.VARIABLE|Binding.METHOD) != 0) {
if ((mask & Binding.TYPE) != 0 && (binding = getBaseType(name)) != null)
return binding;
binding = getTypeOrPackage(name, mask);// (mask & Binding.PACKAGE) == 0 ? Binding.TYPE : Binding.TYPE | Binding.PACKAGE);
if (binding.isValidBinding() || mask == Binding.TYPE)
return binding;
// answer the problem type binding if we are only looking for a type
} else if ((mask & Binding.PACKAGE) != 0) {
unitScope.recordSimpleReference(name);
if ((binding = env.getTopLevelPackage(name)) != null)
return binding;
}
if (problemField != null) return problemField;
if (binding != null && binding.problemId() != ProblemReasons.NotFound)
return binding; // answer the better problem binding
return new ProblemBinding(name, enclosingTypeBinding(), ProblemReasons.NotFound);
} catch (AbortCompilation e) {
e.updateContext(invocationSite, referenceCompilationUnit().compilationResult);
throw e;
} finally {
env.missingClassFileLocation = null;
}
}
/* API
*
* Answer the binding that corresponds to the argument name.
* flag is a mask of the following values VARIABLE (= FIELD or LOCAL), TYPE, PACKAGE.
* Only bindings corresponding to the mask can be answered.
*
* For example, getBinding("foo", VARIABLE, site) will answer
* the binding for the field or local named "foo" (or an error binding if none exists).
* If a type named "foo" exists, it will not be detected (and an error binding will be answered)
*
* The VARIABLE mask has precedence over the TYPE mask.
*
* If the VARIABLE mask is not set, neither fields nor locals will be looked for.
*
* InvocationSite implements:
* isSuperAccess(); this is used to determine if the discovered field is visible.
*
* Limitations: cannot request FIELD independently of LOCAL, or vice versa
*/
public Binding getLocalBinding(char[] name, int mask, InvocationSite invocationSite, boolean needResolve) {
CompilationUnitScope unitScope = compilationUnitScope();
try {
Binding binding = null;
FieldBinding problemField = null;
if ((mask & Binding.VARIABLE) != 0) {
boolean insideStaticContext = false;
boolean insideConstructorCall = false;
FieldBinding foundField = null;
// can be a problem field which is answered if a valid field is not found
ProblemFieldBinding foundInsideProblem = null;
// inside Constructor call or inside static context
Scope scope = this;
int depth = 0;
int foundDepth = 0;
ReferenceBinding foundActualReceiverType = null;
done : while (true) { // done when a COMPILATION_UNIT_SCOPE is found
switch (scope.kind) {
case METHOD_SCOPE :
MethodScope methodScope = (MethodScope) scope;
insideStaticContext |= methodScope.isStatic;
insideConstructorCall |= methodScope.isConstructorCall;
// Fall through... could duplicate the code below to save a cast - questionable optimization
case BLOCK_SCOPE :
LocalVariableBinding variableBinding = scope.findVariable(name);
// looks in this scope only
if (variableBinding != null) {
if (foundField != null && foundField.isValidBinding())
return new ProblemFieldBinding(
foundField, // closest match
foundField.declaringClass,
name,
ProblemReasons.InheritedNameHidesEnclosingName);
if (depth > 0)
invocationSite.setDepth(depth);
return variableBinding;
}
break;
case CLASS_SCOPE :
ClassScope classScope = (ClassScope) scope;
ReferenceBinding receiverType = classScope.enclosingReceiverType();
FieldBinding fieldBinding = classScope.findField(receiverType, name, invocationSite, needResolve);
// Use next line instead if willing to enable protected access accross inner types
// FieldBinding fieldBinding = findField(enclosingType, name, invocationSite);
if (fieldBinding != null) { // skip it if we did not find anything
if (fieldBinding.problemId() == ProblemReasons.Ambiguous) {
if (foundField == null || foundField.problemId() == ProblemReasons.NotVisible)
// supercedes any potential InheritedNameHidesEnclosingName problem
return fieldBinding;
// make the user qualify the field, likely wants the first inherited field (javac generates an ambiguous error instead)
return new ProblemFieldBinding(
foundField, // closest match
foundField.declaringClass,
name,
ProblemReasons.InheritedNameHidesEnclosingName);
}
ProblemFieldBinding insideProblem = null;
if (fieldBinding.isValidBinding()) {
if (!fieldBinding.isStatic()) {
if (insideConstructorCall) {
insideProblem =
new ProblemFieldBinding(
fieldBinding, // closest match
fieldBinding.declaringClass,
name,
ProblemReasons.NonStaticReferenceInConstructorInvocation);
} else if (insideStaticContext) {
insideProblem =
new ProblemFieldBinding(
fieldBinding, // closest match
fieldBinding.declaringClass,
name,
ProblemReasons.NonStaticReferenceInStaticContext);
}
}
if (receiverType == fieldBinding.declaringClass || compilerOptions().complianceLevel >= ClassFileConstants.JDK1_4) {
// found a valid field in the 'immediate' scope (ie. not inherited)
// OR in 1.4 mode (inherited shadows enclosing)
if (foundField == null) {
if (depth > 0){
invocationSite.setDepth(depth);
invocationSite.setActualReceiverType(receiverType);
}
// return the fieldBinding if it is not declared in a superclass of the scope's binding (that is, inherited)
return insideProblem == null ? fieldBinding : insideProblem;
}
if (foundField.isValidBinding())
// if a valid field was found, complain when another is found in an 'immediate' enclosing type (that is, not inherited)
if (foundField.declaringClass != fieldBinding.declaringClass)
// ie. have we found the same field - do not trust field identity yet
return new ProblemFieldBinding(
foundField, // closest match
foundField.declaringClass,
name,
ProblemReasons.InheritedNameHidesEnclosingName);
}
}
if (foundField == null || (foundField.problemId() == ProblemReasons.NotVisible && fieldBinding.problemId() != ProblemReasons.NotVisible)) {
// only remember the fieldBinding if its the first one found or the previous one was not visible & fieldBinding is...
foundDepth = depth;
foundActualReceiverType = receiverType;
foundInsideProblem = insideProblem;
foundField = fieldBinding;
}
}
depth++;
insideStaticContext |= receiverType.isStatic();
// 1EX5I8Z - accessing outer fields within a constructor call is permitted
// in order to do so, we change the flag as we exit from the type, not the method
// itself, because the class scope is used to retrieve the fields.
MethodScope enclosingMethodScope = scope.methodScope();
insideConstructorCall = enclosingMethodScope == null ? false : enclosingMethodScope.isConstructorCall;
break;
case WITH_SCOPE :
{
WithScope withScope = (WithScope) scope;
TypeBinding withType = withScope.referenceContext;
FieldBinding withBinding = withScope.findField(withType, name, invocationSite, needResolve);
// Use next line instead if willing to enable protected access accross inner types
// FieldBinding fieldBinding = findField(enclosingType, name, invocationSite);
if (withBinding != null) { // skip it if we did not find anything
if (withBinding.isValidBinding()) {
return withBinding;
}
}
}
break;
case COMPILATION_UNIT_SCOPE :
if ( (mask & (Binding.FIELD|Binding.VARIABLE)) >0)
{
variableBinding = scope.findVariable(name);
// looks in this scope only
if (variableBinding != null) {
if (foundField != null && foundField.isValidBinding())
return new ProblemFieldBinding(
foundField, // closest match
foundField.declaringClass,
name,
ProblemReasons.InheritedNameHidesEnclosingName);
if (depth > 0)
invocationSite.setDepth(depth);
return variableBinding;
}
if(unitScope.classScope()!=null) {
//ReferenceBinding bind = env.getType(new char[][]{unitScope.superTypeName});
//if(bind==null) break done;
foundField = (unitScope.classScope()).findField(unitScope.superBinding, name, invocationSite, true);
if(foundField!=null && foundField.isValidBinding()) {
return foundField;
}
}
}else if ( (mask & (Binding.METHOD)) >0){
MethodBinding methodBinding = (unitScope.classScope()).findMethod(unitScope.superBinding, name, new TypeBinding[0], invocationSite);
if(methodBinding!=null && methodBinding.isValidBinding()) return methodBinding;
}
break done;
}
scope = scope.parent;
}
if (foundInsideProblem != null)
return foundInsideProblem;
if (foundField != null) {
if (foundField.isValidBinding()) {
if (foundDepth > 0) {
invocationSite.setDepth(foundDepth);
invocationSite.setActualReceiverType(foundActualReceiverType);
}
return foundField;
}
problemField = foundField;
foundField = null;
}
}
if ( (mask&Binding.METHOD)!=0)
{
MethodBinding methodBinding = findMethod(null, name, Binding.NO_PARAMETERS, invocationSite);
if (methodBinding!=null && methodBinding.isValidBinding())
return methodBinding;
}
if (problemField != null) return problemField;
if (binding != null && binding.problemId() != ProblemReasons.NotFound)
return binding; // answer the better problem binding
return new ProblemBinding(name, enclosingTypeBinding(), ProblemReasons.NotFound);
} catch (AbortCompilation e) {
e.updateContext(invocationSite, referenceCompilationUnit().compilationResult);
throw e;
} finally {
}
}
/**
* <p><b>NOTE:</b> This function does not validate the given argument types because any number of arguments
* can be passed to any JavaScript function or constructor.</p>
*
* @param receiverType
* @param argumentTypes
* @param invocationSite
* @return The constructor for the given receiver type or a {@link ProblemMethodBinding} if the
* constructor is not visible.
*/
public MethodBinding getConstructor(ReferenceBinding receiverType, TypeBinding[] argumentTypes, InvocationSite invocationSite) {
CompilationUnitScope unitScope = compilationUnitScope();
LookupEnvironment env = unitScope.environment;
try {
env.missingClassFileLocation = invocationSite;
unitScope.recordTypeReference(receiverType);
unitScope.recordTypeReferences(argumentTypes);
MethodBinding methodBinding = receiverType.getExactConstructor(argumentTypes);
if (methodBinding != null && methodBinding.canBeSeenBy(invocationSite, this)) {
return methodBinding;
}
//get the methods
MethodBinding[] methods = receiverType.sourceName != null ? receiverType.getMethods(receiverType.sourceName) : null;
MethodBinding constructor = null;
if (methods == null || methods == Binding.NO_METHODS || methods.length == 0){
constructor = new MethodBinding(0, receiverType.sourceName, receiverType, null,receiverType);
} else {
//log warning about to many constructors
if(methods.length > 1 && Compiler.DEBUG) {
Logger.log(Logger.WARNING_DEBUG, "Scope#getConstructor: There should only ever be one match for a" +
" constructor search but found " + methods.length + " when looking for " +
new String(receiverType.sourceName) + ". Using the first match.");
}
//should only ever be one constructor so use the first one in the list
constructor = methods[0];
}
//if can't be seen return problem binding
if(!constructor.canBeSeenBy(invocationSite, this)) {
constructor = new ProblemMethodBinding(
methods[0],
methods[0].selector,
methods[0].parameters,
ProblemReasons.NotVisible);
}
return constructor;
} catch (AbortCompilation e) {
e.updateContext(invocationSite, referenceCompilationUnit().compilationResult);
throw e;
} finally {
env.missingClassFileLocation = null;
}
}
public final PackageBinding getCurrentPackage() {
Scope scope, unitScope = this;
while ((scope = unitScope.parent) != null)
unitScope = scope;
return ((CompilationUnitScope) unitScope).getDefaultPackage();
}
/**
* Returns the modifiers of the innermost enclosing declaration.
* @return modifiers
*/
public int getDeclarationModifiers(){
switch(this.kind){
case Scope.BLOCK_SCOPE :
case Scope.METHOD_SCOPE :
MethodScope methodScope = methodScope();
if (!methodScope.isInsideInitializer()){
// check method modifiers to see if deprecated
MethodBinding context = ((AbstractMethodDeclaration)methodScope.referenceContext).getBinding();
if (context != null)
return context.modifiers;
} else {
SourceTypeBinding type = ((BlockScope) this).referenceType().binding;
// inside field declaration ? check field modifier to see if deprecated
if (methodScope.initializedField != null)
return methodScope.initializedField.modifiers;
if (type != null)
return type.modifiers;
}
break;
case Scope.CLASS_SCOPE :
ReferenceBinding context = ((ClassScope)this).referenceType().binding;
if (context != null)
return context.modifiers;
break;
}
return -1;
}
public FieldBinding getField(TypeBinding receiverType, char[] fieldName, InvocationSite invocationSite) {
LookupEnvironment env = environment();
try {
env.missingClassFileLocation = invocationSite;
FieldBinding field = findField(receiverType, fieldName, invocationSite, true /*resolve*/);
if (field != null) return field;
return new ProblemFieldBinding(
receiverType instanceof ReferenceBinding ? (ReferenceBinding) receiverType : null,
fieldName,
ProblemReasons.NotFound);
} catch (AbortCompilation e) {
e.updateContext(invocationSite, referenceCompilationUnit().compilationResult);
throw e;
} finally {
env.missingClassFileLocation = null;
}
}
public Binding getFieldOrMethod( TypeBinding receiverType, char[] fieldName, InvocationSite invocationSite ) {
LookupEnvironment env = environment();
try {
env.missingClassFileLocation = invocationSite;
//first look for field
FieldBinding field = findField(receiverType, fieldName, invocationSite, true /*resolve*/);
if (field != null) {
return field;
}
/* not sure if this fix is correct, but receiver type is [sometimes] coming in as "BaseTypeBinding" and causing a classcastexception */
MethodBinding method = findMethod(
receiverType instanceof ReferenceBinding?(ReferenceBinding)receiverType:null,
fieldName, null, invocationSite );
if( method != null )
{
if (!method.isValidBinding())
{
if (method.problemId()!=ProblemReasons.NotFound)
return method;
}
else
return method;
}
return new ProblemFieldBinding(
receiverType instanceof ReferenceBinding ? (ReferenceBinding) receiverType : null,
fieldName,
ProblemReasons.NotFound);
} catch (AbortCompilation e) {
e.updateContext(invocationSite, referenceCompilationUnit().compilationResult);
throw e;
} finally {
env.missingClassFileLocation = null;
}
}
/* API
*
* Answer the method binding that corresponds to selector, argumentTypes.
* Start the lookup at the enclosing type of the receiver.
* InvocationSite implements
* isSuperAccess(); this is used to determine if the discovered method is visible.
* setDepth(int); this is used to record the depth of the discovered method
* relative to the enclosing type of the receiver. (If the method is defined
* in the enclosing type of the receiver, the depth is 0; in the next enclosing
* type, the depth is 1; and so on
*
* If no visible method is discovered, an error binding is answered.
*/
public MethodBinding getImplicitMethod(char[] selector, TypeBinding[] argumentTypes, InvocationSite invocationSite) {
boolean insideStaticContext = false;
boolean insideConstructorCall = false;
MethodBinding foundMethod = null;
MethodBinding foundProblem = null;
boolean foundProblemVisible = false;
Scope scope = this;
int depth = 0;
// in 1.4 mode (inherited visible shadows enclosing)
CompilerOptions options;
boolean inheritedHasPrecedence = (options = compilerOptions()).complianceLevel >= ClassFileConstants.JDK1_4;
done : while (true) { // done when a COMPILATION_UNIT_SCOPE is found
switch (scope.kind) {
case METHOD_SCOPE :
MethodScope methodScope = (MethodScope) scope;
insideStaticContext |= methodScope.isStatic;
insideConstructorCall |= methodScope.isConstructorCall;
MethodBinding binding = methodScope.findMethod(selector,argumentTypes,true);
if (binding!=null)
return binding;
LocalVariableBinding variable = methodScope.findVariable(selector);
if (variable!=null)
{
}
break;
case WITH_SCOPE :
WithScope withScope = (WithScope) scope;
ReferenceBinding withType = withScope.referenceContext;
// retrieve an exact visible match (if possible)
// compilationUnitScope().recordTypeReference(receiverType); not needed since receiver is the source type
MethodBinding methBinding = withScope.findExactMethod(withType, selector, argumentTypes, invocationSite);
if (methBinding == null)
methBinding = withScope.findMethod(withType, selector, argumentTypes, invocationSite);
if (methBinding != null) { // skip it if we did not find anything
if (methBinding.isValidBinding()) {
return methBinding;
}
}
break;
case CLASS_SCOPE :
ClassScope classScope = (ClassScope) scope;
ReferenceBinding receiverType = classScope.enclosingReceiverType();
// retrieve an exact visible match (if possible)
// compilationUnitScope().recordTypeReference(receiverType); not needed since receiver is the source type
MethodBinding methodBinding = classScope.findExactMethod(receiverType, selector, argumentTypes, invocationSite);
if (methodBinding == null)
methodBinding = classScope.findMethod(receiverType, selector, argumentTypes, invocationSite);
if (methodBinding != null) { // skip it if we did not find anything
if (foundMethod == null) {
if (methodBinding.isValidBinding()) {
if (!methodBinding.isStatic() && (insideConstructorCall || insideStaticContext)) {
if (foundProblem != null && foundProblem.problemId() != ProblemReasons.NotVisible)
return foundProblem; // takes precedence
return new ProblemMethodBinding(
methodBinding, // closest match
methodBinding.selector,
methodBinding.parameters,
insideConstructorCall
? ProblemReasons.NonStaticReferenceInConstructorInvocation
: ProblemReasons.NonStaticReferenceInStaticContext);
}
if (inheritedHasPrecedence
|| receiverType == methodBinding.declaringClass
|| (receiverType.getMethods(selector)) != Binding.NO_METHODS) {
// found a valid method in the 'immediate' scope (ie. not inherited)
// OR in 1.4 mode (inherited visible shadows enclosing)
// OR the receiverType implemented a method with the correct name
// return the methodBinding if it is not declared in a superclass of the scope's binding (that is, inherited)
if (foundProblemVisible) {
return foundProblem;
}
if (depth > 0) {
invocationSite.setDepth(depth);
invocationSite.setActualReceiverType(receiverType);
}
return methodBinding;
}
if (foundProblem == null || foundProblem.problemId() == ProblemReasons.NotVisible) {
if (foundProblem != null) foundProblem = null;
// only remember the methodBinding if its the first one found
// remember that private methods are visible if defined directly by an enclosing class
if (depth > 0) {
invocationSite.setDepth(depth);
invocationSite.setActualReceiverType(receiverType);
}
foundMethod = methodBinding;
}
} else { // methodBinding is a problem method
if (methodBinding.problemId() != ProblemReasons.NotVisible && methodBinding.problemId() != ProblemReasons.NotFound)
return methodBinding; // return the error now
if (foundProblem == null) {
foundProblem = methodBinding; // hold onto the first not visible/found error and keep the second not found if first is not visible
}
if (! foundProblemVisible && methodBinding.problemId() == ProblemReasons.NotFound) {
MethodBinding closestMatch = ((ProblemMethodBinding) methodBinding).closestMatch;
if (closestMatch != null && closestMatch.canBeSeenBy(receiverType, invocationSite, this)) {
foundProblem = methodBinding; // hold onto the first not visible/found error and keep the second not found if first is not visible
foundProblemVisible = true;
}
}
}
} else { // found a valid method so check to see if this is a hiding case
if (methodBinding.problemId() == ProblemReasons.Ambiguous
|| (foundMethod.declaringClass != methodBinding.declaringClass
&& (receiverType == methodBinding.declaringClass || receiverType.getMethods(selector) != Binding.NO_METHODS)))
// ambiguous case -> must qualify the method (javac generates an ambiguous error instead)
// otherwise if a method was found, complain when another is found in an 'immediate' enclosing type (that is, not inherited)
// NOTE: Unlike fields, a non visible method hides a visible method
return new ProblemMethodBinding(
methodBinding, // closest match
selector,
argumentTypes,
ProblemReasons.InheritedNameHidesEnclosingName);
}
}
depth++;
insideStaticContext |= receiverType.isStatic();
// 1EX5I8Z - accessing outer fields within a constructor call is permitted
// in order to do so, we change the flag as we exit from the type, not the method
// itself, because the class scope is used to retrieve the fields.
MethodScope enclosingMethodScope = scope.methodScope();
insideConstructorCall = enclosingMethodScope == null ? false : enclosingMethodScope.isConstructorCall;
break;
case COMPILATION_UNIT_SCOPE :
CompilationUnitScope compilationUnitScope = (CompilationUnitScope) scope;
CompilationUnitBinding compilationUnitBinding = compilationUnitScope.enclosingCompilationUnit();
receiverType = compilationUnitBinding;
methodBinding =
(foundMethod == null)
? compilationUnitScope.findExactMethod(receiverType, selector, argumentTypes, invocationSite)
: compilationUnitScope.findExactMethod(receiverType, foundMethod.selector, foundMethod.parameters, invocationSite);
if (methodBinding == null)
methodBinding = compilationUnitScope.findMethod(receiverType, selector, argumentTypes, invocationSite);
if (methodBinding == null)
methodBinding = compilationUnitScope.findMethod(selector, argumentTypes,true);
if (methodBinding != null) { // skip it if we did not find anything
if (methodBinding.problemId() == ProblemReasons.Ambiguous) {
if (foundMethod == null || foundMethod.problemId() == ProblemReasons.NotVisible) {
// supercedes any potential InheritedNameHidesEnclosingName problem
return methodBinding;
}
// make the user qualify the method, likely wants the first inherited method (javac generates an ambiguous error instead)
return new ProblemMethodBinding(
methodBinding, // closest match
selector,
argumentTypes,
ProblemReasons.InheritedNameHidesEnclosingName);
}
MethodBinding fuzzyProblem = null;
MethodBinding insideProblem = null;
if (foundMethod == null) {
if (receiverType == methodBinding.declaringClass
|| (receiverType.getMethods(selector)) != Binding.NO_METHODS
|| ((foundProblem == null || foundProblem.problemId() != ProblemReasons.NotVisible) && compilerOptions().complianceLevel >= ClassFileConstants.JDK1_4)) {
// found a valid method in the 'immediate' scope (ie. not inherited)
// OR the receiverType implemented a method with the correct name
// OR in 1.4 mode (inherited visible shadows enclosing)
if (depth > 0) {
invocationSite.setDepth(depth);
invocationSite.setActualReceiverType(receiverType);
}
// return the methodBinding if it is not declared in a superclass of the scope's binding (that is, inherited)
if (foundProblem != null && foundProblem.problemId() != ProblemReasons.NotVisible)
return foundProblem;
if (insideProblem != null)
return insideProblem;
return methodBinding;
}
}
if (foundMethod == null || (foundMethod.problemId() == ProblemReasons.NotVisible && methodBinding.problemId() != ProblemReasons.NotVisible)) {
// only remember the methodBinding if its the first one found or the previous one was not visible & methodBinding is...
// remember that private methods are visible if defined directly by an enclosing class
if (depth > 0) {
invocationSite.setDepth(depth);
invocationSite.setActualReceiverType(receiverType);
}
foundProblem = fuzzyProblem;
foundProblem = insideProblem;
if (fuzzyProblem == null)
foundMethod = methodBinding; // only keep it if no error was found
}
}
depth++;
insideStaticContext |= receiverType.isStatic();
break done;
}
scope = scope.parent;
}
if (insideStaticContext && options.sourceLevel >= ClassFileConstants.JDK1_5) {
if (foundProblem != null) {
if (foundProblem.declaringClass != null && foundProblem.declaringClass.id == TypeIds.T_JavaLangObject)
return foundProblem; // static imports lose to methods from Object
if (foundProblem.problemId() == ProblemReasons.NotFound && foundProblemVisible) {
return foundProblem; // visible method selectors take precedence
}
}
}
if (foundMethod != null) {
invocationSite.setActualReceiverType(foundMethod.declaringClass);
return foundMethod;
}
if (foundProblem != null)
return foundProblem;
return new ProblemMethodBinding(selector, argumentTypes, ProblemReasons.NotFound);
}
public final ReferenceBinding getJavaLangAssertionError() {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordQualifiedReference(JAVA_LANG_ASSERTIONERROR);
return unitScope.environment.getResolvedType(JAVA_LANG_ASSERTIONERROR, this);
}
public final ReferenceBinding getJavaLangClass() {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordQualifiedReference(JAVA_LANG_CLASS);
return unitScope.environment.getResolvedType(JAVA_LANG_CLASS, this);
}
public final ReferenceBinding getJavaLangIterable() {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordQualifiedReference(JAVA_LANG_ITERABLE);
return unitScope.environment.getResolvedType(JAVA_LANG_ITERABLE, this);
}
public final ReferenceBinding getJavaLangObject() {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordQualifiedReference(JAVA_LANG_OBJECT);
return unitScope.environment.getResolvedType(JAVA_LANG_OBJECT, this);
}
public final ReferenceBinding getJavaLangArray() {
compilationUnitScope().recordQualifiedReference(ARRAY);
return environment().getResolvedType(ARRAY, this);
}
public final ReferenceBinding getJavaLangString() {
compilationUnitScope().recordQualifiedReference(JAVA_LANG_STRING);
return environment().getResolvedType(JAVA_LANG_STRING, this);
}
public final ReferenceBinding getJavaLangNumber() {
compilationUnitScope().recordQualifiedReference(NUMBER);
return environment().getResolvedType(NUMBER, this);
}
public final ReferenceBinding getJavaLangFunction() {
compilationUnitScope().recordQualifiedReference(FUNCTION);
return environment().getResolvedType(FUNCTION, this);
}
public final ReferenceBinding getJavaLangBoolean() {
compilationUnitScope().recordQualifiedReference(BOOLEAN_OBJECT);
return environment().getResolvedType(BOOLEAN_OBJECT, this);
}
public final ReferenceBinding getJavaLangThrowable() {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordQualifiedReference(JAVA_LANG_THROWABLE);
return unitScope.environment.getResolvedType(JAVA_LANG_THROWABLE, this);
}
public final ReferenceBinding getJavaLangError() {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordQualifiedReference(ERROR);
return unitScope.environment.getResolvedType(ERROR, this);
}
public final ReferenceBinding getJavaLangRegExp() {
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordQualifiedReference(REGEXP);
return unitScope.environment.getResolvedType(REGEXP, this);
}
/* Answer the type binding corresponding to the typeName argument, relative to the enclosingType.
*/
public final ReferenceBinding getMemberType(char[] typeName, ReferenceBinding enclosingType) {
ReferenceBinding memberType = findMemberType(typeName, enclosingType);
if (memberType != null) return memberType;
return new ProblemReferenceBinding(typeName, null, ProblemReasons.NotFound);
}
public MethodBinding getMethod(TypeBinding receiverType, char[] selector, TypeBinding[] argumentTypes, InvocationSite invocationSite) {
CompilationUnitScope unitScope = compilationUnitScope();
LookupEnvironment env = unitScope.environment;
try {
env.missingClassFileLocation = invocationSite;
if (receiverType==null)
return new ProblemMethodBinding(selector, argumentTypes, ProblemReasons.NotFound);
switch (receiverType.kind()) {
case Binding.BASE_TYPE :
return new ProblemMethodBinding(selector, argumentTypes, ProblemReasons.NotFound);
// case Binding.ARRAY_TYPE :
// unitScope.recordTypeReference(receiverType);
// return findMethodForArray((ArrayBinding) receiverType, selector, argumentTypes, invocationSite);
}
unitScope.recordTypeReference(receiverType);
ReferenceBinding currentType = (ReferenceBinding) receiverType;
if (!currentType.canBeSeenBy(this))
return new ProblemMethodBinding(selector, argumentTypes, ProblemReasons.ReceiverTypeNotVisible);
// retrieve an exact visible match (if possible)
MethodBinding methodBinding = findExactMethod(currentType, selector, argumentTypes, invocationSite);
if (methodBinding != null) return methodBinding;
methodBinding = findMethod(currentType, selector, argumentTypes, invocationSite);
if (methodBinding == null)
return new ProblemMethodBinding(selector, argumentTypes, ProblemReasons.NotFound);
if (!methodBinding.isValidBinding())
return methodBinding;
return methodBinding;
} catch (AbortCompilation e) {
e.updateContext(invocationSite, referenceCompilationUnit().compilationResult);
throw e;
} finally {
env.missingClassFileLocation = null;
}
}
/* Answer the package from the compoundName or null if it begins with a type.
* Intended to be used while resolving a qualified type name.
*
* NOTE: If a problem binding is returned, senders should extract the compound name
* from the binding & not assume the problem applies to the entire compoundName.
*/
public final Binding getPackage(char[][] compoundName) {
compilationUnitScope().recordQualifiedReference(compoundName);
Binding binding = getTypeOrPackage(compoundName[0], Binding.TYPE | Binding.PACKAGE);
if (binding == null)
return new ProblemReferenceBinding(compoundName[0], null, ProblemReasons.NotFound);
if (!binding.isValidBinding())
return binding;
if (!(binding instanceof PackageBinding)) return null; // compoundName does not start with a package
int currentIndex = 1;
PackageBinding packageBinding = (PackageBinding) binding;
while (currentIndex < compoundName.length) {
binding = packageBinding.getTypeOrPackage(compoundName[currentIndex++], Binding.PACKAGE);
if (binding == null)
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
null,
ProblemReasons.NotFound);
if (!binding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
binding instanceof ReferenceBinding ? ((ReferenceBinding)binding).closestMatch() : null,
binding.problemId());
if (!(binding instanceof PackageBinding))
return packageBinding;
packageBinding = (PackageBinding) binding;
}
return new ProblemReferenceBinding(compoundName, null, ProblemReasons.NotFound);
}
/* Answer the type binding that corresponds the given name, starting the lookup in the receiver.
* The name provided is a simple source name (e.g., "Object" , "Point", ...)
*/
// The return type of this method could be ReferenceBinding if we did not answer base types.
// NOTE: We could support looking for Base Types last in the search, however any code using
// this feature would be extraordinarily slow. Therefore we don't do this
public final TypeBinding getType(char[] name) {
// Would like to remove this test and require senders to specially handle base types
TypeBinding binding = getBaseType(name);
if (binding != null) return binding;
return (ReferenceBinding) getTypeOrPackage(name, Binding.TYPE);
}
/* Answer the type binding that corresponds to the given name, starting the lookup in the receiver
* or the packageBinding if provided.
* The name provided is a simple source name (e.g., "Object" , "Point", ...)
*/
public final TypeBinding getType(char[] name, PackageBinding packageBinding) {
if (packageBinding == null)
return getType(name);
Binding binding = packageBinding.getTypeOrPackage(name, Binding.TYPE);
if (binding == null)
return new ProblemReferenceBinding(
CharOperation.arrayConcat(packageBinding.compoundName, name),
null,
ProblemReasons.NotFound);
if (!binding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.arrayConcat(packageBinding.compoundName, name),
binding instanceof ReferenceBinding ? ((ReferenceBinding)binding).closestMatch() : null,
binding.problemId());
ReferenceBinding typeBinding = (ReferenceBinding) binding;
if (!typeBinding.canBeSeenBy(this))
return new ProblemReferenceBinding(
CharOperation.arrayConcat(packageBinding.compoundName, name),
typeBinding,
ProblemReasons.NotVisible);
return typeBinding;
}
/* Answer the type binding corresponding to the compoundName.
*
* NOTE: If a problem binding is returned, senders should extract the compound name
* from the binding & not assume the problem applies to the entire compoundName.
*/
public final TypeBinding getType(char[][] compoundName, int typeNameLength) {
if (typeNameLength == 1) {
// Would like to remove this test and require senders to specially handle base types
TypeBinding binding = getBaseType(compoundName[0]);
if (binding != null) return binding;
}
CompilationUnitScope unitScope = compilationUnitScope();
unitScope.recordQualifiedReference(compoundName);
Binding binding =
getTypeOrPackage(compoundName[0], typeNameLength == 1 ? Binding.TYPE : Binding.TYPE | Binding.PACKAGE);
if (binding == null)
return new ProblemReferenceBinding(compoundName[0], null, ProblemReasons.NotFound);
if (!binding.isValidBinding())
return (ReferenceBinding) binding;
int currentIndex = 1;
boolean checkVisibility = false;
if (binding instanceof PackageBinding) {
PackageBinding packageBinding = (PackageBinding) binding;
while (currentIndex < typeNameLength) {
binding = packageBinding.getTypeOrPackage(compoundName[currentIndex++], Binding.TYPE); // does not check visibility
if (binding == null)
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
null,
ProblemReasons.NotFound);
if (!binding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
binding instanceof ReferenceBinding ? ((ReferenceBinding)binding).closestMatch() : null,
binding.problemId());
if (!(binding instanceof PackageBinding))
break;
packageBinding = (PackageBinding) binding;
}
if (binding instanceof PackageBinding)
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
null,
ProblemReasons.NotFound);
checkVisibility = true;
}
// binding is now a ReferenceBinding
ReferenceBinding typeBinding = (ReferenceBinding) binding;
unitScope.recordTypeReference(typeBinding);
if (checkVisibility) // handles the fall through case
if (!typeBinding.canBeSeenBy(this))
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
typeBinding,
ProblemReasons.NotVisible);
while (currentIndex < typeNameLength) {
typeBinding = getMemberType(compoundName[currentIndex++], typeBinding);
if (!typeBinding.isValidBinding()) {
if (typeBinding instanceof ProblemReferenceBinding) {
ProblemReferenceBinding problemBinding = (ProblemReferenceBinding) typeBinding;
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
problemBinding.closestMatch(),
typeBinding.problemId());
}
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
((ReferenceBinding)binding).closestMatch(),
typeBinding.problemId());
}
}
return typeBinding;
}
/* Internal use only
*/
final Binding getTypeOrPackage(char[] name, int mask) {
Scope scope = this;
Binding foundType = null;
boolean insideStaticContext = false;
if ((mask & Binding.TYPE) == 0) {
Scope next = scope;
while ((next = scope.parent) != null)
scope = next;
} else {
done : while (true) { // done when a COMPILATION_UNIT_SCOPE is found
switch (scope.kind) {
case METHOD_SCOPE :
MethodScope methodScope = (MethodScope) scope;
insideStaticContext |= methodScope.isStatic;
case BLOCK_SCOPE :
ReferenceBinding localType = ((BlockScope) scope).findLocalType(name); // looks in this scope only
if (localType != null) {
return localType;
}
break;
case CLASS_SCOPE :
SourceTypeBinding sourceType = ((ClassScope) scope).getReferenceBinding();
// type variables take precedence over the source type, ex. class X <X> extends X == class X <Y> extends Y
// but not when we step out to the enclosing type
if (CharOperation.equals(name, sourceType.sourceName))
return sourceType;
insideStaticContext |= sourceType.isStatic();
break;
case COMPILATION_UNIT_SCOPE :
break done;
}
scope = scope.parent;
}
}
// at this point the scope is a compilation unit scope
CompilationUnitScope unitScope = (CompilationUnitScope) scope;
HashtableOfObject typeOrPackageCache = unitScope.typeOrPackageCache;
if (typeOrPackageCache != null) {
Binding binding = (Binding) typeOrPackageCache.get(name);
if (binding != null) { // can also include NotFound ProblemReferenceBindings if we already know this name is not found
if (binding instanceof ImportBinding) { // single type import cached in faultInImports(), replace it in the cache with the type
ImportReference importReference = ((ImportBinding) binding).reference;
if (importReference != null)
importReference.bits |= ASTNode.Used;
if (binding instanceof ImportConflictBinding)
typeOrPackageCache.put(name, binding = ((ImportConflictBinding) binding).conflictingTypeBinding); // already know its visible
else
typeOrPackageCache.put(name, binding = ((ImportBinding) binding).resolvedImport); // already know its visible
}
if ((mask & Binding.TYPE) != 0) {
if (binding instanceof ReferenceBinding)
return binding; // cached type found in previous walk below
}
if ((mask & Binding.PACKAGE) != 0 && binding instanceof PackageBinding)
return binding; // cached package found in previous walk below
}
}
// ask for the imports + name
if ((mask & Binding.TYPE|Binding.VARIABLE|Binding.METHOD) != 0) {
ImportBinding[] imports = unitScope.imports;
if (imports != null && typeOrPackageCache == null) { // walk single type imports since faultInImports() has not run yet
nextImport : for (int i = 0, length = imports.length; i < length; i++) {
ImportBinding importBinding = imports[i];
if (!importBinding.onDemand) {
if (CharOperation.equals(importBinding.compoundName[importBinding.compoundName.length - 1], name)) {
Binding resolvedImport = unitScope.resolveSingleImport(importBinding);
if (resolvedImport == null) continue nextImport;
if (resolvedImport instanceof MethodBinding) {
resolvedImport = getType(importBinding.compoundName, importBinding.compoundName.length);
if (!resolvedImport.isValidBinding()) continue nextImport;
}
if (resolvedImport instanceof TypeBinding) {
ImportReference importReference = importBinding.reference;
if (importReference != null)
importReference.bits |= ASTNode.Used;
return resolvedImport; // already know its visible
}
}
}
}
}
// check on file imports
if (imports != null) {
for (int i = 0, length = imports.length; i < length; i++) {
ImportBinding someImport = imports[i];
if (someImport.reference!=null && someImport.reference.isFileImport())
{
Binding resolvedImport = someImport.resolvedImport;
Binding temp = null;
if (resolvedImport instanceof CompilationUnitBinding) {
CompilationUnitBinding compilationUnitBinding =(CompilationUnitBinding)resolvedImport;
temp = findBinding(name, mask, compilationUnitBinding.getPackage(), unitScope.getDefaultPackage(), false);
if (temp!=null && temp.isValidBinding())
{
ImportReference importReference = someImport.reference;
importReference.bits |= ASTNode.Used;
if (typeOrPackageCache != null)
typeOrPackageCache.put(name, temp);
return temp; // type is always visible to its own package
}
}
}
}
}
// check if the name is in the current package, skip it if its a sub-package
PackageBinding currentPackage = unitScope.getDefaultPackage();
unitScope.recordReference(currentPackage.compoundName, name);
Binding binding=currentPackage.getTypeOrPackage(name, mask);
if ( (binding instanceof ReferenceBinding || binding instanceof MethodBinding)
&& !(binding instanceof ProblemReferenceBinding)) {
if (typeOrPackageCache != null)
typeOrPackageCache.put(name, binding);
return binding; // type is always visible to its own package
}
else if (binding instanceof LocalVariableBinding && binding.isValidBinding())
{
compilationUnitScope().addExternalVar((LocalVariableBinding)binding);
return binding;
}
// check on demand imports
if (imports != null) {
boolean foundInImport = false;
Binding type = null;
for (int i = 0, length = imports.length; i < length; i++) {
ImportBinding someImport = imports[i];
if (someImport.onDemand) {
Binding resolvedImport = someImport.resolvedImport;
Binding temp = null;
if (resolvedImport instanceof PackageBinding) {
temp = findBinding(name, mask, (PackageBinding) resolvedImport, currentPackage, false);
} else {
temp = findDirectMemberType(name, (ReferenceBinding) resolvedImport);
}
if (temp != type && temp != null) {
if (temp.isValidBinding()) {
ImportReference importReference = someImport.reference;
if (importReference != null)
importReference.bits |= ASTNode.Used;
if (foundInImport) {
// Answer error binding -- import on demand conflict; name found in two import on demand packages.
temp = new ProblemReferenceBinding(name, null, ProblemReasons.Ambiguous);
if (typeOrPackageCache != null)
typeOrPackageCache.put(name, temp);
return temp;
}
type = temp;
foundInImport = true;
} else if (foundType == null) {
foundType = temp;
}
}
}
}
if (type != null) {
if (typeOrPackageCache != null)
typeOrPackageCache.put(name, type);
return type;
}
}
}
unitScope.recordSimpleReference(name);
if ((mask & Binding.PACKAGE) != 0) {
PackageBinding packageBinding = unitScope.environment.getTopLevelPackage(name);
if (packageBinding != null) {
if (typeOrPackageCache != null)
typeOrPackageCache.put(name, packageBinding);
return packageBinding;
}
}
// Answer error binding -- could not find name
if (foundType == null) {
foundType = new ProblemReferenceBinding(name, null, ProblemReasons.NotFound);
if (typeOrPackageCache != null && (mask & Binding.PACKAGE) != 0) // only put NotFound type in cache if you know its not a package
typeOrPackageCache.put(name, foundType);
}
return foundType;
}
// Added for code assist... NOT Public API
// DO NOT USE to resolve import references since this method assumes 'A.B' is relative to a single type import of 'p1.A'
// when it may actually mean the type B in the package A
// use CompilationUnitScope.getImport(char[][]) instead
public final Binding getTypeOrPackage(char[][] compoundName) {
return getTypeOrPackage(compoundName,Binding.TYPE | Binding.PACKAGE);
}
public final Binding getTypeOrPackage(char[][] compoundName, int mask) {
int nameLength = compoundName.length;
if (nameLength == 1) {
TypeBinding binding = getBaseType(compoundName[0]);
if (binding != null) return binding;
}
Binding binding = getTypeOrPackage(compoundName[0], Binding.TYPE | Binding.PACKAGE);
if (!binding.isValidBinding()) return binding;
int currentIndex = 1;
boolean checkVisibility = false;
if (binding instanceof PackageBinding) {
PackageBinding packageBinding = (PackageBinding) binding;
while (currentIndex < nameLength) {
binding = packageBinding.getTypeOrPackage(compoundName[currentIndex++], mask);
if (binding == null)
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
null,
ProblemReasons.NotFound);
if (!binding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
binding instanceof ReferenceBinding ? ((ReferenceBinding)binding).closestMatch() : null,
binding.problemId());
if (!(binding instanceof PackageBinding))
break;
packageBinding = (PackageBinding) binding;
}
if (binding instanceof PackageBinding) return binding;
checkVisibility = true;
}
// binding is now a ReferenceBinding
ReferenceBinding typeBinding = (ReferenceBinding) binding;
ReferenceBinding qualifiedType = typeBinding;
if (checkVisibility) // handles the fall through case
if (!typeBinding.canBeSeenBy(this))
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
typeBinding,
ProblemReasons.NotVisible);
while (currentIndex < nameLength) {
typeBinding = getMemberType(compoundName[currentIndex++], typeBinding);
// checks visibility
if (!typeBinding.isValidBinding())
return new ProblemReferenceBinding(
CharOperation.subarray(compoundName, 0, currentIndex),
((ReferenceBinding)binding).closestMatch(),
typeBinding.problemId());
qualifiedType = typeBinding;
}
return qualifiedType;
}
protected boolean hasErasedCandidatesCollisions(TypeBinding one, TypeBinding two, Map invocations, ReferenceBinding type, ASTNode typeRef) {
invocations.clear();
TypeBinding[] mecs = minimalErasedCandidates(new TypeBinding[] {one, two}, invocations);
if (mecs != null) {
nextCandidate: for (int k = 0, max = mecs.length; k < max; k++) {
TypeBinding mec = mecs[k];
if (mec == null) continue nextCandidate;
Object value = invocations.get(mec);
if (value instanceof TypeBinding[]) {
TypeBinding[] invalidInvocations = (TypeBinding[]) value;
type.tagBits |= TagBits.HierarchyHasProblems;
return true;
}
}
}
return false;
}
/**
* Returns the immediately enclosing switchCase statement (carried by closest blockScope),
*/
public CaseStatement innermostSwitchCase() {
Scope scope = this;
do {
if (scope instanceof BlockScope)
return ((BlockScope) scope).enclosingCase;
scope = scope.parent;
} while (scope != null);
return null;
}
protected boolean isAcceptableMethod(MethodBinding one, MethodBinding two) {
TypeBinding[] oneParams = one.parameters;
TypeBinding[] twoParams = two.parameters;
int oneParamsLength = oneParams.length;
int twoParamsLength = twoParams.length;
if (oneParamsLength == twoParamsLength) {
for (int i = 0; i < oneParamsLength; i++) {
TypeBinding oneParam = oneParams[i];
TypeBinding twoParam = twoParams[i];
if (oneParam == twoParam) {
continue;
}
if (oneParam.isCompatibleWith(twoParam)) {
} else {
if (i == oneParamsLength - 1 && one.isVarargs() && two.isVarargs()) {
TypeBinding eType = ((ArrayBinding) twoParam).elementsType();
if (oneParam == eType || oneParam.isCompatibleWith(eType))
return true; // special case to choose between 2 varargs methods when the last arg is Object[]
}
return false;
}
}
return true;
}
if (one.isVarargs() && two.isVarargs()) {
if (oneParamsLength > twoParamsLength) {
// special case when autoboxing makes (int, int...) better than (Object...) but not (int...) or (Integer, int...)
if (((ArrayBinding) twoParams[twoParamsLength - 1]).elementsType().id != TypeIds.T_JavaLangObject)
return false;
}
// check that each parameter before the vararg parameters are compatible (no autoboxing allowed here)
for (int i = (oneParamsLength > twoParamsLength ? twoParamsLength : oneParamsLength) - 2; i >= 0; i--)
if (oneParams[i] != twoParams[i] && !oneParams[i].isCompatibleWith(twoParams[i]))
return false;
if (parameterCompatibilityLevel(one, twoParams) == NOT_COMPATIBLE
&& parameterCompatibilityLevel(two, oneParams) == VARARGS_COMPATIBLE)
return true;
}
return false;
}
public boolean isBoxingCompatibleWith(TypeBinding expressionType, TypeBinding targetType) {
LookupEnvironment environment = environment();
if (environment.globalOptions.sourceLevel < ClassFileConstants.JDK1_5 || expressionType.isBaseType() == targetType.isBaseType())
return false;
// check if autoboxed type is compatible
TypeBinding convertedType = environment.computeBoxingType(expressionType);
return convertedType == targetType || convertedType.isCompatibleWith(targetType);
}
/* Answer true if the scope is nested inside a given field declaration.
* Note: it works as long as the scope.fieldDeclarationIndex is reflecting the field being traversed
* e.g. during name resolution.
*/
public final boolean isDefinedInField(FieldBinding field) {
Scope scope = this;
do {
if (scope instanceof MethodScope) {
MethodScope methodScope = (MethodScope) scope;
if (methodScope.initializedField == field) return true;
}
scope = scope.parent;
} while (scope != null);
return false;
}
/* Answer true if the scope is nested inside a given method declaration
*/
public final boolean isDefinedInMethod(MethodBinding method) {
Scope scope = this;
do {
if (scope instanceof MethodScope) {
ReferenceContext refContext = ((MethodScope) scope).referenceContext;
if (refContext instanceof AbstractMethodDeclaration)
if (((AbstractMethodDeclaration) refContext).getBinding() == method)
return true;
}
scope = scope.parent;
} while (scope != null);
return false;
}
/* Answer whether the type is defined in the same compilation unit as the receiver
*/
public final boolean isDefinedInSameUnit(ReferenceBinding type) {
// find the outer most enclosing type
ReferenceBinding enclosingType = type;
while ((type = enclosingType.enclosingType()) != null)
enclosingType = type;
// find the compilation unit scope
Scope scope, unitScope = this;
while ((scope = unitScope.parent) != null)
unitScope = scope;
// test that the enclosingType is not part of the compilation unit
SourceTypeBinding[] topLevelTypes = ((CompilationUnitScope) unitScope).topLevelTypes;
for (int i = topLevelTypes.length; --i >= 0;)
if (topLevelTypes[i] == enclosingType)
return true;
return false;
}
/* Answer true if the scope is nested inside a given type declaration
*/
public final boolean isDefinedInType(ReferenceBinding type) {
Scope scope = this;
do {
if (scope instanceof ClassScope)
if (((ClassScope) scope).getReferenceBinding() == type)
return true;
scope = scope.parent;
} while (scope != null);
return false;
}
/**
* Returns true if the scope or one of its parent is associated to a given caseStatement, denoting
* being part of a given switch case statement.
*/
public boolean isInsideCase(CaseStatement caseStatement) {
Scope scope = this;
do {
switch (scope.kind) {
case Scope.BLOCK_SCOPE :
if (((BlockScope) scope).enclosingCase == caseStatement) {
return true;
}
}
scope = scope.parent;
} while (scope != null);
return false;
}
public boolean isInsideDeprecatedCode(){
switch(this.kind){
case Scope.BLOCK_SCOPE :
case Scope.METHOD_SCOPE :
MethodScope methodScope = methodScope();
if (!methodScope.isInsideInitializer()){
// check method modifiers to see if deprecated
MethodBinding context = ((AbstractMethodDeclaration)methodScope.referenceContext).getBinding();
if (context != null && context.isViewedAsDeprecated())
return true;
} else {
SourceTypeBinding type = ((BlockScope)this).referenceType().binding;
// inside field declaration ? check field modifier to see if deprecated
if (methodScope.initializedField != null && methodScope.initializedField.isViewedAsDeprecated())
return true;
if (type != null) {
if (type.isViewedAsDeprecated())
return true;
}
}
break;
case Scope.CLASS_SCOPE :
ReferenceBinding context = ((ClassScope)this).referenceType().binding;
if (context != null) {
if (context.isViewedAsDeprecated())
return true;
}
break;
case Scope.COMPILATION_UNIT_SCOPE :
// consider import as being deprecated if first type is itself deprecated (123522)
CompilationUnitDeclaration unit = referenceCompilationUnit();
if (unit.types != null && unit.types.length > 0) {
SourceTypeBinding type = unit.types[0].binding;
if (type != null) {
if (type.isViewedAsDeprecated())
return true;
}
}
}
return false;
}
public MethodScope methodScope() {
Scope scope = this;
do {
if (scope instanceof MethodScope)
return (MethodScope) scope;
scope = scope.parent;
} while (scope != null);
return null;
}
/**
* Returns the most specific set of types compatible with all given types.
* (i.e. most specific common super types)
* If no types is given, will return an empty array. If not compatible
* reference type is found, returns null. In other cases, will return an array
* of minimal erased types, where some nulls may appear (and must simply be
* ignored).
*/
protected TypeBinding[] minimalErasedCandidates(TypeBinding[] types, Map allInvocations) {
int length = types.length;
int indexOfFirst = -1, actualLength = 0;
for (int i = 0; i < length; i++) {
TypeBinding type = types[i];
if (type == null) continue;
if (type.isBaseType()) return null;
if (indexOfFirst < 0) indexOfFirst = i;
actualLength ++;
}
switch (actualLength) {
case 0: return Binding.NO_TYPES;
case 1: return types;
}
TypeBinding firstType = types[indexOfFirst];
if (firstType.isBaseType()) return null;
// record all supertypes of type
// intersect with all supertypes of otherType
ArrayList typesToVisit = new ArrayList(5);
int dim = firstType.dimensions();
TypeBinding leafType = firstType.leafComponentType();
TypeBinding firstErasure = firstType;
if (firstErasure != firstType) {
allInvocations.put(firstErasure, firstType);
}
typesToVisit.add(firstType);
int max = 1;
ReferenceBinding currentType;
for (int i = 0; i < max; i++) {
TypeBinding typeToVisit = (TypeBinding) typesToVisit.get(i);
dim = typeToVisit.dimensions();
if (dim > 0) {
leafType = typeToVisit.leafComponentType();
switch(leafType.id) {
case T_JavaLangObject:
if (dim > 1) { // Object[][] supertype is Object[]
TypeBinding elementType = ((ArrayBinding)typeToVisit).elementsType();
if (!typesToVisit.contains(elementType)) {
typesToVisit.add(elementType);
max++;
}
continue;
}
// fallthrough
case T_short:
case T_char:
case T_boolean:
case T_int:
case T_long:
case T_float:
case T_double:
TypeBinding superType = getJavaLangObject();
if (!typesToVisit.contains(superType)) {
typesToVisit.add(superType);
max++;
}
continue;
default:
}
typeToVisit = leafType;
}
currentType = (ReferenceBinding) typeToVisit;
TypeBinding itsSuperclass = currentType.getSuperBinding();
if (itsSuperclass != null) {
TypeBinding superType = dim == 0 ? itsSuperclass : (TypeBinding)environment().createArrayType(itsSuperclass, dim); // recreate array if needed
if (!typesToVisit.contains(superType)) {
typesToVisit.add(superType);
max++;
TypeBinding superTypeErasure = superType;
if (superTypeErasure != superType) {
allInvocations.put(superTypeErasure, superType);
}
}
}
}
int superLength = typesToVisit.size();
TypeBinding[] erasedSuperTypes = new TypeBinding[superLength];
int rank = 0;
for (Iterator iter = typesToVisit.iterator(); iter.hasNext();) {
TypeBinding type = (TypeBinding)iter.next();
leafType = type.leafComponentType();
erasedSuperTypes[rank++] = type;
}
// intersecting first type supertypes with other types' ones, nullifying non matching supertypes
int remaining = superLength;
nextOtherType: for (int i = indexOfFirst+1; i < length; i++) {
TypeBinding otherType = types[i];
if (otherType == null) continue nextOtherType;
if (otherType.isArrayType()) {
nextSuperType: for (int j = 0; j < superLength; j++) {
TypeBinding erasedSuperType = erasedSuperTypes[j];
if (erasedSuperType == null || erasedSuperType == otherType) continue nextSuperType;
TypeBinding match;
if ((match = otherType.findSuperTypeWithSameErasure(erasedSuperType)) == null) {
erasedSuperTypes[j] = null;
if (--remaining == 0) return null;
continue nextSuperType;
}
// record invocation
Object invocationData = allInvocations.get(erasedSuperType);
if (invocationData == null) {
allInvocations.put(erasedSuperType, match); // no array for singleton
} else if (invocationData instanceof TypeBinding) {
if (match != invocationData) {
// using an array to record invocations in order (188103)
TypeBinding[] someInvocations = { (TypeBinding) invocationData, match, };
allInvocations.put(erasedSuperType, someInvocations);
}
} else { // using an array to record invocations in order (188103)
TypeBinding[] someInvocations = (TypeBinding[]) invocationData;
checkExisting: {
int invocLength = someInvocations.length;
for (int k = 0; k < invocLength; k++) {
if (someInvocations[k] == match) break checkExisting;
}
System.arraycopy(someInvocations, 0, someInvocations = new TypeBinding[invocLength+1], 0, invocLength);
allInvocations.put(erasedSuperType, someInvocations);
someInvocations[invocLength] = match;
}
}
}
continue nextOtherType;
}
nextSuperType: for (int j = 0; j < superLength; j++) {
TypeBinding erasedSuperType = erasedSuperTypes[j];
if (erasedSuperType == null) continue nextSuperType;
TypeBinding match;
if (erasedSuperType == otherType) {
match = erasedSuperType;
} else {
if (erasedSuperType.isArrayType()) {
match = null;
} else {
match = otherType.findSuperTypeWithSameErasure(erasedSuperType);
}
if (match == null) { // incompatible super type
erasedSuperTypes[j] = null;
if (--remaining == 0) return null;
continue nextSuperType;
}
}
// record invocation
Object invocationData = allInvocations.get(erasedSuperType);
if (invocationData == null) {
allInvocations.put(erasedSuperType, match); // no array for singleton
} else if (invocationData instanceof TypeBinding) {
if (match != invocationData) {
// using an array to record invocations in order (188103)
TypeBinding[] someInvocations = { (TypeBinding) invocationData, match, };
allInvocations.put(erasedSuperType, someInvocations);
}
} else { // using an array to record invocations in order (188103)
TypeBinding[] someInvocations = (TypeBinding[]) invocationData;
checkExisting: {
int invocLength = someInvocations.length;
for (int k = 0; k < invocLength; k++) {
if (someInvocations[k] == match) break checkExisting;
}
System.arraycopy(someInvocations, 0, someInvocations = new TypeBinding[invocLength+1], 0, invocLength);
allInvocations.put(erasedSuperType, someInvocations);
someInvocations[invocLength] = match;
}
}
}
}
// eliminate non minimal super types
if (remaining > 1) {
nextType: for (int i = 0; i < superLength; i++) {
TypeBinding erasedSuperType = erasedSuperTypes[i];
if (erasedSuperType == null) continue nextType;
nextOtherType: for (int j = 0; j < superLength; j++) {
if (i == j) continue nextOtherType;
TypeBinding otherType = erasedSuperTypes[j];
if (otherType == null) continue nextOtherType;
if (erasedSuperType instanceof ReferenceBinding) {
if (erasedSuperType.findSuperTypeWithSameErasure(otherType) != null) {
erasedSuperTypes[j] = null; // discard non minimal supertype
remaining--;
}
} else if (erasedSuperType.isArrayType()) {
if (erasedSuperType.findSuperTypeWithSameErasure(otherType) != null) {
erasedSuperTypes[j] = null; // discard non minimal supertype
remaining--;
}
}
}
}
}
return erasedSuperTypes;
}
// Internal use only
/* All methods in visible are acceptable matches for the method in question...
* The methods defined by the receiver type appear before those defined by its
* superclass and so on. We want to find the one which matches best.
*
* Since the receiver type is a class, we know each method's declaring class is
* either the receiver type or one of its superclasses. It is an error if the best match
* is defined by a superclass, when a lesser match is defined by the receiver type
* or a closer superclass.
*/
protected final MethodBinding mostSpecificClassMethodBinding(MethodBinding[] visible, int visibleSize, InvocationSite invocationSite) {
MethodBinding previous = null;
nextVisible : for (int i = 0; i < visibleSize; i++) {
MethodBinding method = visible[i];
if (previous != null && method.declaringClass != previous.declaringClass)
break; // cannot answer a method farther up the hierarchy than the first method found
if (!method.isStatic()) previous = method; // no ambiguity for static methods
for (int j = 0; j < visibleSize; j++) {
if (i == j) continue;
if (!visible[j].areParametersCompatibleWith(method.parameters))
continue nextVisible;
}
return method;
}
return new ProblemMethodBinding(visible[0], visible[0].selector, visible[0].parameters, ProblemReasons.Ambiguous);
}
/**
* caveat: this is not a direct implementation of JLS
*
* @param visible
* @param visibleSize
* @param argumentTypes <code>null</code> means match on any arguments
* @param invocationSite
* @param receiverType
* @return
*/
protected final MethodBinding mostSpecificMethodBinding(MethodBinding[] visible, int visibleSize, TypeBinding[] argumentTypes, InvocationSite invocationSite, ReferenceBinding receiverType) {
int[] compatibilityLevels = new int[visibleSize];
for (int i = 0; i < visibleSize; i++)
compatibilityLevels[i] = parameterCompatibilityLevel(visible[i], argumentTypes);
MethodBinding[] moreSpecific = new MethodBinding[visibleSize];
int count = 0;
for (int level = 0, max = VARARGS_COMPATIBLE; level <= max; level++) {
nextVisible : for (int i = 0; i < visibleSize; i++) {
if (compatibilityLevels[i] != level) continue nextVisible;
max = level; // do not examine further categories, will either return mostSpecific or report ambiguous case
MethodBinding current = visible[i];
MethodBinding original = current.original();
MethodBinding tiebreakMethod = current.tiebreakMethod();
for (int j = 0; j < visibleSize; j++) {
if (i == j || compatibilityLevels[j] != level) continue;
MethodBinding next = visible[j];
if (original == next.original()) {
// parameterized superclasses & interfaces may be walked twice from different paths so skip next from now on
compatibilityLevels[j] = -1;
continue;
}
MethodBinding methodToTest = next;
MethodBinding acceptable = computeCompatibleMethod(methodToTest, tiebreakMethod.parameters, invocationSite);
/* There are 4 choices to consider with current & next :
foo(B) & foo(A) where B extends A
1. the 2 methods are equal (both accept each others parameters) -> want to continue
2. current has more specific parameters than next (so acceptable is a valid method) -> want to continue
3. current has less specific parameters than next (so acceptable is null) -> go on to next
4. current and next are not compatible with each other (so acceptable is null) -> go on to next
*/
if (acceptable == null || !acceptable.isValidBinding())
continue nextVisible;
if (!isAcceptableMethod(tiebreakMethod, acceptable))
continue nextVisible;
// pick a concrete method over a bridge method when parameters are equal since the return type of the concrete method is more specific
if (current.isBridge() && !next.isBridge())
if (tiebreakMethod.areParametersEqual(acceptable))
continue nextVisible; // skip current so acceptable wins over this bridge method
}
moreSpecific[i] = current;
count++;
}
}
if (count == 1) {
for (int i = 0; i < visibleSize; i++) {
if (moreSpecific[i] != null) {
return visible[i];
}
}
} else if (count == 0) {
return new ProblemMethodBinding(visible[0], visible[0].selector, visible[0].parameters, ProblemReasons.Ambiguous);
}
// // found several methods that are mutually acceptable -> must be equal
// // so now with the first acceptable method, find the 'correct' inherited method for each other acceptable method AND
// // see if they are equal after substitution of type variables (do the type variables have to be equal to be considered an override???)
// nextSpecific : for (int i = 0; i < visibleSize; i++) {
// MethodBinding current = moreSpecific[i];
// if (current != null) {
// MethodBinding original = current.original();
// for (int j = 0; j < visibleSize; j++) {
// MethodBinding next = moreSpecific[j];
// if (next == null || i == j) continue;
// MethodBinding original2 = next.original();
// if (original.declaringClass == original2.declaringClass)
// break nextSpecific; // duplicates thru substitution
//
// if (!original.isAbstract()) {
// if (original2.isAbstract())
// continue; // only compare current against other concrete methods
// TypeBinding superType = original.declaringClass.findSuperTypeWithSameErasure(original2.declaringClass);
// if (superType == null)
// continue nextSpecific; // current's declaringClass is not a subtype of next's declaringClass
// } else if (receiverType != null) { // should not be null if original isAbstract, but be safe
// TypeBinding superType = receiverType.findSuperTypeWithSameErasure(original.declaringClass);
// if (original.declaringClass == superType || !(superType instanceof ReferenceBinding)) {
// // keep original
// } else {
// // must find inherited method with the same substituted variables
// MethodBinding[] superMethods = ((ReferenceBinding) superType).getMethods(original.selector);
// for (int m = 0, l = superMethods.length; m < l; m++) {
// if (superMethods[m].original() == original) {
// original = superMethods[m];
// break;
// }
// }
// }
// superType = receiverType.findSuperTypeWithSameErasure(original2.declaringClass);
// if (original2.declaringClass == superType || !(superType instanceof ReferenceBinding)) {
// // keep original2
// } else {
// // must find inherited method with the same substituted variables
// MethodBinding[] superMethods = ((ReferenceBinding) superType).getMethods(original2.selector);
// for (int m = 0, l = superMethods.length; m < l; m++) {
// if (superMethods[m].original() == original2) {
// original2 = superMethods[m];
// break;
// }
// }
// }
// if (original2 == null || !original.areParametersEqual(original2))
// continue nextSpecific; // current does not override next
// if (!original.returnType.isCompatibleWith(original2.returnType) &&
// !original.returnType.isCompatibleWith(original2.returnType)) {
// // 15.12.2
// continue nextSpecific; // choose original2 instead
// }
// }
// }
//
// return current;
// }
// }
//if can not figure which one is best, just pick first one
return moreSpecific[0];
}
public final ClassScope outerMostClassScope() {
ClassScope lastClassScope = null;
Scope scope = this;
do {
if (scope instanceof ClassScope)
lastClassScope = (ClassScope) scope;
scope = scope.parent;
} while (scope != null);
return lastClassScope; // may answer null if no class around
}
public final MethodScope outerMostMethodScope() {
MethodScope lastMethodScope = null;
Scope scope = this;
do {
if (scope instanceof MethodScope)
lastMethodScope = (MethodScope) scope;
scope = scope.parent;
} while (scope != null);
return lastMethodScope; // may answer null if no method around
}
/**
*
* @param method
* @param arguments <code>null</code> means match on any arguments
*
* @return
*/
public int parameterCompatibilityLevel(MethodBinding method, TypeBinding[] arguments) {
//if not arguments to compare against, assume arguments do not matter, so compatible
if(arguments == null) {
return COMPATIBLE;
}
TypeBinding[] parameters = method.parameters;
int paramLength = parameters.length;
int argLength = arguments.length;
if (compilerOptions().sourceLevel < ClassFileConstants.JDK1_5) {
if (paramLength != argLength)
return NOT_COMPATIBLE;
for (int i = 0; i < argLength; i++) {
TypeBinding param = parameters[i];
TypeBinding arg = arguments[i];
if (arg != param && !arg.isCompatibleWith(param))
return NOT_COMPATIBLE;
}
return COMPATIBLE;
}
int level = COMPATIBLE; // no autoboxing or varargs support needed
int lastIndex = argLength;
LookupEnvironment env = environment();
if (method.isVarargs()) {
lastIndex = paramLength - 1;
if (paramLength == argLength) { // accept X or X[] but not X[][]
TypeBinding param = parameters[lastIndex]; // is an ArrayBinding by definition
TypeBinding arg = arguments[lastIndex];
if (param != arg) {
level = parameterCompatibilityLevel(arg, param, env);
if (level == NOT_COMPATIBLE) {
// expect X[], is it called with X
param = ((ArrayBinding) param).elementsType();
if (parameterCompatibilityLevel(arg, param, env) == NOT_COMPATIBLE)
return NOT_COMPATIBLE;
level = VARARGS_COMPATIBLE; // varargs support needed
}
}
} else {
if (paramLength < argLength) { // all remaining argument types must be compatible with the elementsType of varArgType
TypeBinding param = ((ArrayBinding) parameters[lastIndex]).elementsType();
for (int i = lastIndex; i < argLength; i++) {
TypeBinding arg = arguments[i];
if (param != arg && parameterCompatibilityLevel(arg, param, env) == NOT_COMPATIBLE)
return NOT_COMPATIBLE;
}
} else if (lastIndex != argLength) { // can call foo(int i, X ... x) with foo(1) but NOT foo();
return NOT_COMPATIBLE;
}
level = VARARGS_COMPATIBLE; // varargs support needed
}
} else if (paramLength != argLength) {
return NOT_COMPATIBLE;
}
// now compare standard arguments from 0 to lastIndex
for (int i = 0; i < lastIndex; i++) {
TypeBinding param = parameters[i];
TypeBinding arg = arguments[i];
if (arg != param) {
int newLevel = parameterCompatibilityLevel(arg, param, env);
if (newLevel == NOT_COMPATIBLE)
return NOT_COMPATIBLE;
if (newLevel > level)
level = newLevel;
}
}
return level;
}
private int parameterCompatibilityLevel(TypeBinding arg, TypeBinding param, LookupEnvironment env) {
// only called if env.options.sourceLevel >= ClassFileConstants.JDK1_5
if (arg.isCompatibleWith(param))
return COMPATIBLE;
if (arg.isBaseType() != param.isBaseType()) {
TypeBinding convertedType = env.computeBoxingType(arg);
if (convertedType == param || convertedType.isCompatibleWith(param))
return AUTOBOX_COMPATIBLE;
}
return NOT_COMPATIBLE;
}
public abstract ProblemReporter problemReporter();
public final CompilationUnitDeclaration referenceCompilationUnit() {
Scope scope, unitScope = this;
while ((scope = unitScope.parent) != null)
unitScope = scope;
return ((CompilationUnitScope) unitScope).referenceContext;
}
/**
* Returns the nearest reference context, starting from current scope.
* If starting on a class, it will return current class. If starting on unitScope, returns unit.
*/
public ReferenceContext referenceContext() {
Scope current = this;
do {
switch(current.kind) {
case METHOD_SCOPE :
return ((MethodScope) current).referenceContext;
case CLASS_SCOPE :
return ((ClassScope) current).referenceContext;
case COMPILATION_UNIT_SCOPE :
return ((CompilationUnitScope) current).referenceContext;
}
} while ((current = current.parent) != null);
return null;
}
// start position in this scope - for ordering scopes vs. variables
int startIndex() {
return 0;
}
}